Breno Mellado, Lucas de O Carneiro, Marcelo R Nogueira, L Gerardo Herrera M, Ariovaldo P Cruz-Neto, Leandro R Monteiro
{"title":"Developmental instability, body mass, and reproduction predict immunological response in short-tailed bats","authors":"Breno Mellado, Lucas de O Carneiro, Marcelo R Nogueira, L Gerardo Herrera M, Ariovaldo P Cruz-Neto, Leandro R Monteiro","doi":"10.1093/cz/zoae034","DOIUrl":null,"url":null,"abstract":"Developmental instability (DI) is a phenomenon whereby organisms are unable to buffer developmental disturbances, resulting in asymmetric variation of paired traits. Previous research has demonstrated a negative relationship between DI, measured as forearm asymmetry, and survival in the bat Carollia perspicillata. This study aims to test the hypothesis that individuals with higher DI exhibit a lower immune response. We measured a delayed-type hypersensitivity to the antigen phytohemagglutinin (PHA) on 74 males and 65 females of C. perspicillata before and after the breeding season. Linear models were used to predict the immunological response based on body mass, forearm asymmetry, sex, breeding season, and testicle length. The best-fitting model accounted for 29% of the variation in immune response and included asymmetry, body mass, sex, and breeding season as predictors. The immune response was negatively associated with asymmetry and testicle length in males, but positively related to asymmetry in females. Both sexes showed a reduced immune response in the late breeding season. Additionally, the association between immune response and body mass changed direction seasonally, with heavier individuals showing weaker responses early in the breeding season and stronger responses later. Individual variation in male immunity was predicted by individual attributes, whereas variation in immune response in females was mostly seasonal. Our results support the link between DI, survival, and immune response in short-tailed bats, and suggest that the immunological component measured by the PHA response may be under finer selection in males due to its stronger correlation with individual traits.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/cz/zoae034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developmental instability (DI) is a phenomenon whereby organisms are unable to buffer developmental disturbances, resulting in asymmetric variation of paired traits. Previous research has demonstrated a negative relationship between DI, measured as forearm asymmetry, and survival in the bat Carollia perspicillata. This study aims to test the hypothesis that individuals with higher DI exhibit a lower immune response. We measured a delayed-type hypersensitivity to the antigen phytohemagglutinin (PHA) on 74 males and 65 females of C. perspicillata before and after the breeding season. Linear models were used to predict the immunological response based on body mass, forearm asymmetry, sex, breeding season, and testicle length. The best-fitting model accounted for 29% of the variation in immune response and included asymmetry, body mass, sex, and breeding season as predictors. The immune response was negatively associated with asymmetry and testicle length in males, but positively related to asymmetry in females. Both sexes showed a reduced immune response in the late breeding season. Additionally, the association between immune response and body mass changed direction seasonally, with heavier individuals showing weaker responses early in the breeding season and stronger responses later. Individual variation in male immunity was predicted by individual attributes, whereas variation in immune response in females was mostly seasonal. Our results support the link between DI, survival, and immune response in short-tailed bats, and suggest that the immunological component measured by the PHA response may be under finer selection in males due to its stronger correlation with individual traits.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.