Effects of substituted chalcogen atoms on excited state proton transfer reaction for 2,5-bis(benzoxazole-2-yl)-thiophene-3,4-diol derivatives: A theoretical study

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-03 DOI:10.1002/jccs.202400174
Jiahe Chen, Jinfeng Zhao
{"title":"Effects of substituted chalcogen atoms on excited state proton transfer reaction for 2,5-bis(benzoxazole-2-yl)-thiophene-3,4-diol derivatives: A theoretical study","authors":"Jiahe Chen,&nbsp;Jinfeng Zhao","doi":"10.1002/jccs.202400174","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the captivating allure of exquisitely regulated characteristics exhibited by 2-(2-hydroxyphenyl)-benzoxazole and its derivatives in the domains of photochemistry and photophysics, our current endeavor primarily focuses on delving into the intricacies of photo-induced excited state reactions for derivatives of 2,5-bis(benzoxazol-2-yl)-thiophene-3,4-diol (BTD). Given the profound impact of chalcogen element doping, our primary focus lies in investigating the excited state behaviors of BTD-O, BTD-S, and BTD-Se fluorophores. Through simulations encompassing variations in geometry and vertical excitation charge reorganization, we unveil atomic-electronegativity-dependent hydrogen bonding interactions and photoexcitation-induced charge recombination that can significantly augment the intramolecular double proton transfer (ESDPT) reaction in the excited state for BTD-O, BTD-S, and BTD-Se fluorophores. By constructing potential energy surfaces and identifying transition state forms, we elucidate the ultrafast stepwise ESDPT mechanism facilitated by the low potential barriers. Moreover, we rigorously validate the chalcogen atomic electronegativity-driven regulation of the stepwise ESDPT mechanism. We sincerely anticipate that manipulating solvent polarity will pave the way for groundbreaking advancements in luminescent materials.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400174","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the captivating allure of exquisitely regulated characteristics exhibited by 2-(2-hydroxyphenyl)-benzoxazole and its derivatives in the domains of photochemistry and photophysics, our current endeavor primarily focuses on delving into the intricacies of photo-induced excited state reactions for derivatives of 2,5-bis(benzoxazol-2-yl)-thiophene-3,4-diol (BTD). Given the profound impact of chalcogen element doping, our primary focus lies in investigating the excited state behaviors of BTD-O, BTD-S, and BTD-Se fluorophores. Through simulations encompassing variations in geometry and vertical excitation charge reorganization, we unveil atomic-electronegativity-dependent hydrogen bonding interactions and photoexcitation-induced charge recombination that can significantly augment the intramolecular double proton transfer (ESDPT) reaction in the excited state for BTD-O, BTD-S, and BTD-Se fluorophores. By constructing potential energy surfaces and identifying transition state forms, we elucidate the ultrafast stepwise ESDPT mechanism facilitated by the low potential barriers. Moreover, we rigorously validate the chalcogen atomic electronegativity-driven regulation of the stepwise ESDPT mechanism. We sincerely anticipate that manipulating solvent polarity will pave the way for groundbreaking advancements in luminescent materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
取代的绿原原子对 2,5-双(苯并恶唑-2-基)-噻吩-3,4-二醇衍生物激发态质子转移反应的影响:理论研究
2-(2-hydroxyphenyl)-benzoxazole 及其衍生物在光化学和光物理领域所表现出的精细调节特性极具诱惑力,受此激励,我们目前的工作主要集中在深入研究 2,5-双(苯并恶唑-2-基)-噻吩-3,4-二醇(BTD)衍生物的光诱导激发态反应的复杂性。鉴于掺杂绿原元素的深远影响,我们的主要重点是研究 BTD-O、BTD-S 和 BTD-Se 荧光体的激发态行为。通过包含几何形状和垂直激发电荷重组变化的模拟,我们揭示了原子电负性依赖的氢键相互作用和光激发诱导的电荷重组,它们可以显著增强 BTD-O、BTD-S 和 BTD-Se 荧光团激发态的分子内双质子转移(ESDPT)反应。通过构建势能面和识别过渡态形式,我们阐明了低势垒促进的超快分步 ESDPT 机制。此外,我们还严格验证了铬原子电负性对逐步式 ESDPT 机制的调控作用。我们衷心希望,操纵溶剂极性将为发光材料的突破性发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1