Xin Guo, Jiesong Tu, Zhibin Fan, Baoshuai Du, Hongfei Shang, Jiangfeng An, Dan Jia
{"title":"Experimental and simulation analysis of mechanical property degradation of corrosion thinning of Q355 steel for transmission towers","authors":"Xin Guo, Jiesong Tu, Zhibin Fan, Baoshuai Du, Hongfei Shang, Jiangfeng An, Dan Jia","doi":"10.1108/acmm-03-2024-2982","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Corrosion thinning reduces the effective cross-sectional areas of steel structures and degrades their mechanical properties. This study aims to investigate the relationship between the corrosion thinning of carbon steel for transmission towers and the degradation of its mechanical properties.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A macroscopic finite element model of a transmission tower was established and then combined with the corrosion thinning and mechanical properties of Q355 steel in different test periods measured in neutral salt spray, SO<sub>2</sub> atmosphere and wet heat environments to conduct a finite element simulation of a transmission tower with different corrosion thinning of Q355 steel.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>When the residual thickness of the tower leg angle was reduced to 4.03 mm, the maximum stress solved in the simulation exceeded the yield strength, with the tower already at risk of collapse owing to corrosion failure under extreme conditions of basic wind speed.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study innovatively utilises transmission tower finite element models and experimental data from mechanical degradation experiments to quantify the relationship between corrosion thinning and the mechanical properties of Q355 steel, ensuring the effective assessment of the mechanical properties of corroded transmission towers.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"8 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-03-2024-2982","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Corrosion thinning reduces the effective cross-sectional areas of steel structures and degrades their mechanical properties. This study aims to investigate the relationship between the corrosion thinning of carbon steel for transmission towers and the degradation of its mechanical properties.
Design/methodology/approach
A macroscopic finite element model of a transmission tower was established and then combined with the corrosion thinning and mechanical properties of Q355 steel in different test periods measured in neutral salt spray, SO2 atmosphere and wet heat environments to conduct a finite element simulation of a transmission tower with different corrosion thinning of Q355 steel.
Findings
When the residual thickness of the tower leg angle was reduced to 4.03 mm, the maximum stress solved in the simulation exceeded the yield strength, with the tower already at risk of collapse owing to corrosion failure under extreme conditions of basic wind speed.
Originality/value
This study innovatively utilises transmission tower finite element models and experimental data from mechanical degradation experiments to quantify the relationship between corrosion thinning and the mechanical properties of Q355 steel, ensuring the effective assessment of the mechanical properties of corroded transmission towers.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.