{"title":"Matrix discrepancy and the log-rank conjecture","authors":"Benny Sudakov, István Tomon","doi":"10.1007/s10107-024-02117-9","DOIUrl":null,"url":null,"abstract":"<p>Given an <span>\\(m\\times n\\)</span> binary matrix <i>M</i> with <span>\\(|M|=p\\cdot mn\\)</span> (where |<i>M</i>| denotes the number of 1 entries), define the <i>discrepancy</i> of <i>M</i> as <span>\\({{\\,\\textrm{disc}\\,}}(M)=\\displaystyle \\max \\nolimits _{X\\subset [m], Y\\subset [n]}\\big ||M[X\\times Y]|-p|X|\\cdot |Y|\\big |\\)</span>. Using semidefinite programming and spectral techniques, we prove that if <span>\\({{\\,\\textrm{rank}\\,}}(M)\\le r\\)</span> and <span>\\(p\\le 1/2\\)</span>, then </p><span>$$\\begin{aligned}{{\\,\\textrm{disc}\\,}}(M)\\ge \\Omega (mn)\\cdot \\min \\left\\{ p,\\frac{p^{1/2}}{\\sqrt{r}}\\right\\} .\\end{aligned}$$</span><p>We use this result to obtain a modest improvement of Lovett’s best known upper bound on the log-rank conjecture. We prove that any <span>\\(m\\times n\\)</span> binary matrix <i>M</i> of rank at most <i>r</i> contains an <span>\\((m\\cdot 2^{-O(\\sqrt{r})})\\times (n\\cdot 2^{-O(\\sqrt{r})})\\)</span> sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank <i>r</i> is at most <span>\\(O(\\sqrt{r})\\)</span>.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02117-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Given an \(m\times n\) binary matrix M with \(|M|=p\cdot mn\) (where |M| denotes the number of 1 entries), define the discrepancy of M as \({{\,\textrm{disc}\,}}(M)=\displaystyle \max \nolimits _{X\subset [m], Y\subset [n]}\big ||M[X\times Y]|-p|X|\cdot |Y|\big |\). Using semidefinite programming and spectral techniques, we prove that if \({{\,\textrm{rank}\,}}(M)\le r\) and \(p\le 1/2\), then
We use this result to obtain a modest improvement of Lovett’s best known upper bound on the log-rank conjecture. We prove that any \(m\times n\) binary matrix M of rank at most r contains an \((m\cdot 2^{-O(\sqrt{r})})\times (n\cdot 2^{-O(\sqrt{r})})\) sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank r is at most \(O(\sqrt{r})\).