Probabilistic Approach to Good Old-Fashioned Artificial Intelligence

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS Pub Date : 2024-06-05 DOI:10.3103/S000510552470002X
D. V. Vinogradov, L. A. Iakimova
{"title":"Probabilistic Approach to Good Old-Fashioned Artificial Intelligence","authors":"D. V. Vinogradov,&nbsp;L. A. Iakimova","doi":"10.3103/S000510552470002X","DOIUrl":null,"url":null,"abstract":"<p>The paper proposes the use of a probabilistic knowledge-extraction mechanism to resume the use of good old-fashioned artificial intelligence. As a model task, it is proposed to automatically generate the rules of the Tic-Tac-Toe game. Similar rules were used in the well-known General Problem Solver system developed by A. Newell and H. Simon. Unlike the past, where scientists wrote the rules for the optimal game strategy manually, we will use a probabilistic-combinatorial formal method to generate them automatically. We will also discuss the relationship between the proposed approach and the reinforcement-learning paradigm.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S000510552470002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes the use of a probabilistic knowledge-extraction mechanism to resume the use of good old-fashioned artificial intelligence. As a model task, it is proposed to automatically generate the rules of the Tic-Tac-Toe game. Similar rules were used in the well-known General Problem Solver system developed by A. Newell and H. Simon. Unlike the past, where scientists wrote the rules for the optimal game strategy manually, we will use a probabilistic-combinatorial formal method to generate them automatically. We will also discuss the relationship between the proposed approach and the reinforcement-learning paradigm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
老式人工智能的概率方法
摘要 本文建议使用一种概率知识提取机制来恢复老式人工智能的使用。作为一个模型任务,它建议自动生成井字游戏的规则。A. Newell 和 H. Simon 开发的著名的通用问题解决系统也使用了类似的规则。与以往科学家手动编写最优游戏策略规则不同,我们将使用概率-组合形式化方法自动生成规则。我们还将讨论所提出的方法与强化学习范式之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
期刊最新文献
On the Way to Machine Consciousness: Identification of Hidden System Properties of Material Objects Developing a Knowledge Base from Oncological Patients’ Neurosurgical Operations Data Event-Driven Process Methodology Notation for Information Processing Research Multicomponent English and Russian Terms Alignment in a Parallel Corpus Based on a SimAlign Package On Modeling the Information Activities of Modern Libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1