Hongshun Zheng, Baoye Zi, Tong Zhou, Guoyang Qiu, Zhongge Luo, Qingjie Lu, Alain Rafael Puente Santiago, Yumin Zhang, Jianhong Zhao, Jin Zhang, Tianwei He and Qingju Liu
{"title":"Insight into mechanism for remarkable photocatalytic hydrogen evolution of Cu/Pr dual atom co-modified TiO2†","authors":"Hongshun Zheng, Baoye Zi, Tong Zhou, Guoyang Qiu, Zhongge Luo, Qingjie Lu, Alain Rafael Puente Santiago, Yumin Zhang, Jianhong Zhao, Jin Zhang, Tianwei He and Qingju Liu","doi":"10.1039/D4NH00196F","DOIUrl":null,"url":null,"abstract":"<p >The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO<small><sub>2</sub></small> architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO<small><sub>2</sub></small> surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr–TiO<small><sub>2</sub></small>, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr–TiO<small><sub>2</sub></small>, which is located at −4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO<small><sub>2</sub></small>, Pr–TiO<small><sub>2</sub></small>, and Cu/TiO<small><sub>2</sub></small>, Cu/Pr–TiO<small><sub>2</sub></small> displays the best H* adsorption Gibbs free energy (−0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr–TiO<small><sub>2</sub></small> is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) also significantly surpasses those of Cu/TiO<small><sub>2</sub></small> (13.39 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and Pr–TiO<small><sub>2</sub></small> (0.89 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO<small><sub>2</sub></small> photocatalysts.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1532-1542"},"PeriodicalIF":8.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00196f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO2 architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO2 surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr–TiO2, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr–TiO2, which is located at −4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO2, Pr–TiO2, and Cu/TiO2, Cu/Pr–TiO2 displays the best H* adsorption Gibbs free energy (−0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr–TiO2 is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g−1 h−1) also significantly surpasses those of Cu/TiO2 (13.39 mmol g−1 h−1) and Pr–TiO2 (0.89 mmol g−1 h−1). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO2 photocatalysts.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.