Origin of O2 Generation in Sulfide-Based All-Solid-State Batteries and its Impact on High Energy Density.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-07-08 DOI:10.1002/advs.202402528
Keisuke Yoshikawa, Takeshi Kato, Yasuhiro Suzuki, Akihiro Shiota, Tsuyoshi Ohnishi, Koji Amezawa, Aiko Nakao, Takeshi Yajima, Yasutoshi Iriyama
{"title":"Origin of O<sub>2</sub> Generation in Sulfide-Based All-Solid-State Batteries and its Impact on High Energy Density.","authors":"Keisuke Yoshikawa, Takeshi Kato, Yasuhiro Suzuki, Akihiro Shiota, Tsuyoshi Ohnishi, Koji Amezawa, Aiko Nakao, Takeshi Yajima, Yasutoshi Iriyama","doi":"10.1002/advs.202402528","DOIUrl":null,"url":null,"abstract":"<p><p>The cathode surface of sulfide-based all-solid-state batteries (SBs) is commonly coated with amorphous-LiNbO<sub>3</sub> in order to stabilize charge-discharge reactions. However, high-voltage charging diminishes the advantages, which is caused by problems with the amorphous-LiNbO<sub>3</sub> coating layer. This study has investigated the degradation of amorphous-LiNbO<sub>3</sub> coating layer directly during the high-voltage charging of SBs. O<sub>2</sub> generation via Li extraction from the amorphous-LiNbO<sub>3</sub> coating layer is observed using electrochemical gas analysis and electrochemical X-ray photoelectron spectroscopy. This O<sub>2</sub> leads to the formation of an oxidative solid electrolyte (SE) around the coating layer and degrades the battery performance. On the other hand, elemental substitution (i.e., amorphous-LiNb<sub>x</sub>P<sub>1-</sub> <sub>x</sub>O<sub>3</sub>) reduces O<sub>2</sub> release, leading to stable high-voltage charge-discharge reactions of SBs. The results have emphasized that the suppression of O<sub>2</sub> generation is a key factor in improving the energy density of SBs.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202402528","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The cathode surface of sulfide-based all-solid-state batteries (SBs) is commonly coated with amorphous-LiNbO3 in order to stabilize charge-discharge reactions. However, high-voltage charging diminishes the advantages, which is caused by problems with the amorphous-LiNbO3 coating layer. This study has investigated the degradation of amorphous-LiNbO3 coating layer directly during the high-voltage charging of SBs. O2 generation via Li extraction from the amorphous-LiNbO3 coating layer is observed using electrochemical gas analysis and electrochemical X-ray photoelectron spectroscopy. This O2 leads to the formation of an oxidative solid electrolyte (SE) around the coating layer and degrades the battery performance. On the other hand, elemental substitution (i.e., amorphous-LiNbxP1- xO3) reduces O2 release, leading to stable high-voltage charge-discharge reactions of SBs. The results have emphasized that the suppression of O2 generation is a key factor in improving the energy density of SBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫化物全固态电池中氧气生成的起源及其对高能量密度的影响。
硫化物全固态电池(SB)的阴极表面通常涂有非晶态铌酸锂,以稳定充放电反应。然而,由于非晶态 LiNbO3 涂层存在问题,高压充电会削弱其优势。本研究直接研究了非晶态-LiNbO3 涂层在 SB 的高压充电过程中的降解情况。通过电化学气体分析和电化学 X 射线光电子能谱,观察到非晶态-LiNbO3 涂层中的锂萃取产生了 O2。这种 O2 会在镀膜层周围形成氧化性固体电解质 (SE),并降低电池性能。另一方面,元素替代(即非晶态-LiNbxP1- xO3)减少了 O2 的释放,从而导致 SB 稳定的高压充放电反应。研究结果强调,抑制 O2 生成是提高 SB 能量密度的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Exfoliated 2D Nanosheet-Based Conjugated Polymer Composites with P-N Heterojunction Interfaces for Highly Efficient Electrocatalytic Hydrogen Evolution. Extracellular Matrix Sulfation in the Tumor Microenvironment Stimulates Cancer Stemness and Invasiveness. Forkhead Box Protein K1 Promotes Chronic Kidney Disease by Driving Glycolysis in Tubular Epithelial Cells. Origami Morphing Surfaces with Arrayed Quasi-Rigid-Foldable Polyhedrons. Parity-Frequency-Space Elastic Spin Control of Wave Routing in Topological Phononic Circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1