Laurens Bogers , Jasper Rip , Liza Rijvers , Jamie van Langelaar , Steven C. Koetzier , Kirsten L. Kuiper , Veronique Meerdink , Annet F. Wierenga-Wolf , Marie-José Melief , Ana M. Marques , Joost Smolders , Marvin M. van Luijn
{"title":"Impact of coding risk variant IFNGR2 on the B cell-intrinsic IFN-γ signaling pathway in multiple sclerosis","authors":"Laurens Bogers , Jasper Rip , Liza Rijvers , Jamie van Langelaar , Steven C. Koetzier , Kirsten L. Kuiper , Veronique Meerdink , Annet F. Wierenga-Wolf , Marie-José Melief , Ana M. Marques , Joost Smolders , Marvin M. van Luijn","doi":"10.1016/j.jaut.2024.103279","DOIUrl":null,"url":null,"abstract":"<div><p>B cells of people with multiple sclerosis (MS) are more responsive to IFN-γ, corresponding to their brain-homing potential. We studied how a coding single nucleotide polymorphism (SNP) in <em>IFNGR2</em> (rs9808753) co-operates with Epstein-Barr virus (EBV) infection as MS risk factors to affect the IFN-γ signaling pathway in human B cells. In both cell lines and primary cells, EBV infection positively associated with IFN-γ receptor expression and STAT1 phosphorylation. The <em>IFNGR2</em> risk SNP selectively promoted downstream signaling via STAT1, particularly in transitional B cells. Altogether, EBV and the <em>IFNGR2</em> risk SNP independently amplify IFN-γ signaling, potentially driving B cells to enter the MS brain.</p></div>","PeriodicalId":15245,"journal":{"name":"Journal of autoimmunity","volume":"148 ","pages":"Article 103279"},"PeriodicalIF":7.9000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0896841124001136/pdfft?md5=af7d3ba7a970baa5d8f848df49c5c4dd&pid=1-s2.0-S0896841124001136-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896841124001136","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
B cells of people with multiple sclerosis (MS) are more responsive to IFN-γ, corresponding to their brain-homing potential. We studied how a coding single nucleotide polymorphism (SNP) in IFNGR2 (rs9808753) co-operates with Epstein-Barr virus (EBV) infection as MS risk factors to affect the IFN-γ signaling pathway in human B cells. In both cell lines and primary cells, EBV infection positively associated with IFN-γ receptor expression and STAT1 phosphorylation. The IFNGR2 risk SNP selectively promoted downstream signaling via STAT1, particularly in transitional B cells. Altogether, EBV and the IFNGR2 risk SNP independently amplify IFN-γ signaling, potentially driving B cells to enter the MS brain.
期刊介绍:
The Journal of Autoimmunity serves as the primary publication for research on various facets of autoimmunity. These include topics such as the mechanism of self-recognition, regulation of autoimmune responses, experimental autoimmune diseases, diagnostic tests for autoantibodies, as well as the epidemiology, pathophysiology, and treatment of autoimmune diseases. While the journal covers a wide range of subjects, it emphasizes papers exploring the genetic, molecular biology, and cellular aspects of the field.
The Journal of Translational Autoimmunity, on the other hand, is a subsidiary journal of the Journal of Autoimmunity. It focuses specifically on translating scientific discoveries in autoimmunity into clinical applications and practical solutions. By highlighting research that bridges the gap between basic science and clinical practice, the Journal of Translational Autoimmunity aims to advance the understanding and treatment of autoimmune diseases.