{"title":"Identification of chemosensory genes and antennal sensilla in Nassophasis sp. (Coleoptera: Rhynchophorinae)","authors":"Mengmeng Zhang , Li Li , Ximin Zhang","doi":"10.1016/j.cbd.2024.101283","DOIUrl":null,"url":null,"abstract":"<div><p>Phytophagous insects rely on plant volatiles to select and locate hosts for feeding or reproduction and their olfactory system is essential for detecting plant volatiles. The stem-boring pest, <em>Nassophasis</em> sp. damages <em>Dendrobium</em> and causes economic losses. Currently, there are no effective methods for its control. However, understanding the morphological and molecular basis of its olfactory system may identify new pathways for their management and control. In this study, we observed the stemborer's antennal sensilla using scanning electron microscopy, and transcriptome sequencing was undertaken to annotate and analyze its chemosensory genes. Results showed that the antennal morphology is similar between males and females, with five types of antennal sensilla observed: sensilla chaetica (SC), sensilla trichodea (ST), sensilla brush (SB), sensilla basiconica (SBA) and sensilla gemmiformium (SG). Sexual dimorphism was not observed in sensilla type, but in the length of SBA and SG. A total of 70 olfactory-related genes were annotated, including 16 odorant binding proteins (OBP), 5 chemosensory proteins (CSPs), 26 olfactory receptors (ORs), 9 gustatory receptors (GRs), 10 ionotropic receptors (IRs), and 4 sensory neuron membrane proteins (SNMPs). Most genes were highly expressed and 14 of these genes were only expressed in the head, and 7 genes in the abdomen. This study provides a theoretical basis for the olfactory perception of <em>Nassophasis</em> sp. and a scientific basis for developing new pest control strategies.</p></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1744117X24000960/pdfft?md5=b622b52515db49b8e20926ab4026db59&pid=1-s2.0-S1744117X24000960-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24000960","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phytophagous insects rely on plant volatiles to select and locate hosts for feeding or reproduction and their olfactory system is essential for detecting plant volatiles. The stem-boring pest, Nassophasis sp. damages Dendrobium and causes economic losses. Currently, there are no effective methods for its control. However, understanding the morphological and molecular basis of its olfactory system may identify new pathways for their management and control. In this study, we observed the stemborer's antennal sensilla using scanning electron microscopy, and transcriptome sequencing was undertaken to annotate and analyze its chemosensory genes. Results showed that the antennal morphology is similar between males and females, with five types of antennal sensilla observed: sensilla chaetica (SC), sensilla trichodea (ST), sensilla brush (SB), sensilla basiconica (SBA) and sensilla gemmiformium (SG). Sexual dimorphism was not observed in sensilla type, but in the length of SBA and SG. A total of 70 olfactory-related genes were annotated, including 16 odorant binding proteins (OBP), 5 chemosensory proteins (CSPs), 26 olfactory receptors (ORs), 9 gustatory receptors (GRs), 10 ionotropic receptors (IRs), and 4 sensory neuron membrane proteins (SNMPs). Most genes were highly expressed and 14 of these genes were only expressed in the head, and 7 genes in the abdomen. This study provides a theoretical basis for the olfactory perception of Nassophasis sp. and a scientific basis for developing new pest control strategies.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.