Southern Hemisphere Circumpolar Wavenumber-4 Pattern Simulated in SINTEX-F2 Coupled Model

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY Journal of Geophysical Research-Oceans Pub Date : 2024-07-06 DOI:10.1029/2023JC020801
Balaji Senapati, Yushi Morioka, Swadhin K. Behera, Mihir K. Dash
{"title":"Southern Hemisphere Circumpolar Wavenumber-4 Pattern Simulated in SINTEX-F2 Coupled Model","authors":"Balaji Senapati,&nbsp;Yushi Morioka,&nbsp;Swadhin K. Behera,&nbsp;Mihir K. Dash","doi":"10.1029/2023JC020801","DOIUrl":null,"url":null,"abstract":"<p>Interannual sea surface temperature (SST) variations in the subtropical-midlatitude Southern Hemisphere are often associated with a circumpolar wavenumber-4 (W4) pattern. This study is the first attempt to successfully simulate the SST-W4 pattern using a state-of-the-art coupled model called SINTEX-F2 and clarify the underlying physical processes. It is found that the SST variability in the southwestern subtropical Pacific (SWSP) plays a key role in triggering atmospheric variability and generating the SST-W4 pattern during austral summer (December-February). In contrast, the tropical SST variability has a very limited effect. The anomalous convection and associated divergence over the SWSP induce atmospheric Rossby waves confined in the westerly jet. Then, the synoptic disturbances circumnavigate the subtropical Southern Hemisphere, establishing an atmospheric W4 pattern. The atmospheric W4 pattern has an equivalent barotropic structure in the troposphere, and it interacts with the upper ocean, causing variations in mixed layer depth due to latent heat flux (LHF) anomalies. As incoming climatological solar radiation goes into a thinner (thicker) mixed layer, the shallower (deeper) mixed layer promotes surface warming (cooling). This leads to positive (negative) SST anomalies, developing the SST-W4 pattern during austral summer. Subsequently, anomalous entrainment due to the temperature difference between the mixed layer and the water below the mixed layer, anomalous LHF, and disappearance of the overlying atmospheric W4 pattern cause the decay of the SST-W4 pattern during austral autumn. These results indicate that accurate simulation of the atmospheric forcing and the associated atmosphere-ocean interaction is essential to capture the SST-W4 pattern in coupled models.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JC020801","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Interannual sea surface temperature (SST) variations in the subtropical-midlatitude Southern Hemisphere are often associated with a circumpolar wavenumber-4 (W4) pattern. This study is the first attempt to successfully simulate the SST-W4 pattern using a state-of-the-art coupled model called SINTEX-F2 and clarify the underlying physical processes. It is found that the SST variability in the southwestern subtropical Pacific (SWSP) plays a key role in triggering atmospheric variability and generating the SST-W4 pattern during austral summer (December-February). In contrast, the tropical SST variability has a very limited effect. The anomalous convection and associated divergence over the SWSP induce atmospheric Rossby waves confined in the westerly jet. Then, the synoptic disturbances circumnavigate the subtropical Southern Hemisphere, establishing an atmospheric W4 pattern. The atmospheric W4 pattern has an equivalent barotropic structure in the troposphere, and it interacts with the upper ocean, causing variations in mixed layer depth due to latent heat flux (LHF) anomalies. As incoming climatological solar radiation goes into a thinner (thicker) mixed layer, the shallower (deeper) mixed layer promotes surface warming (cooling). This leads to positive (negative) SST anomalies, developing the SST-W4 pattern during austral summer. Subsequently, anomalous entrainment due to the temperature difference between the mixed layer and the water below the mixed layer, anomalous LHF, and disappearance of the overlying atmospheric W4 pattern cause the decay of the SST-W4 pattern during austral autumn. These results indicate that accurate simulation of the atmospheric forcing and the associated atmosphere-ocean interaction is essential to capture the SST-W4 pattern in coupled models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SINTEX-F2 耦合模型模拟的南半球环极 Wavenumber-4 模式
南半球亚热带-中纬度海表温度(SST)的年际变化通常与环极波数-4(W4)模式有关。本研究首次尝试利用最先进的 SINTEX-F2 耦合模式成功模拟了 SST-W4 模式,并阐明了其背后的物理过程。研究发现,西南副热带太平洋(SWSP)的 SST 变率在触发大气变率和产生夏季(12 月至 2 月)SST-W4 模式方面起着关键作用。相比之下,热带 SST 变率的影响非常有限。西南太平洋上空的异常对流和相关辐散会诱发大气罗斯比波,并限制在西风喷流中。然后,同步扰动环绕南半球副热带地区,形成大气 W4 模式。大气 W4 模式在对流层中具有等效的气压结构,它与上层海洋相互作用,导致潜热通量(LHF)异常引起混合层深度变化。当进入的气候太阳辐射进入较薄(较厚)的混合层时,较浅(较深)的混合层会促进地表升温(降温)。这导致正(负)海温异常,在夏季形成 SST-W4 模式。随后,由于混合层和混合层以下水域之间的温差引起的异常夹带、异常 LHF 以及上覆大气 W4 模式的消失,导致 SST-W4 模式在澳大利亚秋季衰减。这些结果表明,要在耦合模式中捕捉 SST-W4 模式,必须准确模拟大气强迫和相关的大气-海洋相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
期刊最新文献
High-Resolution Neural Network Demonstrates Strong CO2 Source-Sink Juxtaposition in the Coastal Zone Factors Controlling DMS Emission and Atmospheric Sulfate Aerosols in the Western Pacific Continental Sea What Drives the Mean Along-Shelf Flow in the Northwest Atlantic Coastal Ocean? Isopycnal Shoaling Causes Interannual Variability in Oxygen on Isopycnals in the Subarctic Northeast Pacific Water Exchange Through the Upper and Middle Luzon Strait Using the Sigma–Pi Diagram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1