DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-07-22 Epub Date: 2024-07-09 DOI:10.1021/acs.jcim.4c00461
Tao Liu, Lena Simine
{"title":"DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression.","authors":"Tao Liu, Lena Simine","doi":"10.1021/acs.jcim.4c00461","DOIUrl":null,"url":null,"abstract":"<p><p>The design of biosequences for biosensing and therapeutics is a challenging multistep search and optimization task. In principle, computational modeling may speed up the design process by virtual screening of sequences based on their binding affinities to target molecules. However, in practice, existing machine-learned models trained to predict binding affinities lack the flexibility with respect to reaction conditions, and molecular dynamics simulations that can incorporate reaction conditions suffer from high computational costs. Here, we describe a computational approach called DeltaGzip that evaluates the free energy of binding in biopolymer-ligand complexes from ultrashort equilibrium molecular dynamics simulations. The entropy of binding is evaluated using the Kolmogorov complexity definition of entropy and approximated using a lossless compression algorithm, Gzip. We benchmark the method on a well-studied data set of protein-ligand complexes comparing the predictions of DeltaGzip to the free energies of binding obtained using Jarzynski equality and experimental measurements.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c00461","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The design of biosequences for biosensing and therapeutics is a challenging multistep search and optimization task. In principle, computational modeling may speed up the design process by virtual screening of sequences based on their binding affinities to target molecules. However, in practice, existing machine-learned models trained to predict binding affinities lack the flexibility with respect to reaction conditions, and molecular dynamics simulations that can incorporate reaction conditions suffer from high computational costs. Here, we describe a computational approach called DeltaGzip that evaluates the free energy of binding in biopolymer-ligand complexes from ultrashort equilibrium molecular dynamics simulations. The entropy of binding is evaluated using the Kolmogorov complexity definition of entropy and approximated using a lossless compression algorithm, Gzip. We benchmark the method on a well-studied data set of protein-ligand complexes comparing the predictions of DeltaGzip to the free energies of binding obtained using Jarzynski equality and experimental measurements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeltaGzip:通过柯尔莫哥洛夫复杂性和无损压缩计算生物聚合物配体结合亲和力
设计用于生物传感和治疗的生物序列是一项具有挑战性的多步骤搜索和优化任务。原则上,计算建模可以根据序列与目标分子的结合亲和力对序列进行虚拟筛选,从而加快设计过程。然而,在实践中,现有的用于预测结合亲和力的机器学习模型缺乏与反应条件相关的灵活性,而可纳入反应条件的分子动力学模拟则存在计算成本高的问题。在此,我们介绍一种名为 DeltaGzip 的计算方法,它能通过超短平衡分子动力学模拟评估生物聚合物-配体复合物的结合自由能。结合熵的评估采用了熵的柯尔莫哥洛夫复杂度定义,并使用无损压缩算法 Gzip 进行近似。我们在一组经过充分研究的蛋白质配体复合物数据集上对该方法进行了基准测试,并将 DeltaGzip 的预测结果与利用 Jarzynski 等式和实验测量获得的结合自由能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Combatting Antibiotic-Resistant Staphylococcus aureus: Discovery of TST1N-224, a Potent Inhibitor Targeting Response Regulator VraRC, through Pharmacophore-Based Screening and Molecular Characterizations. Charge Relaying within a Phospho-Motif Rescue Binding Competency of a Disordered Transcription Factor. Fully Flexible Molecular Alignment Enables Accurate Ligand Structure Modeling. Integrating Prior Chemical Knowledge into the Graph Transformer Network to Predict the Stability Constants of Chelating Agents and Metal Ions. Prediction of Protein Allosteric Sites with Transfer Entropy and Spatial Neighbor-Based Evolutionary Information Learned by an Ensemble Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1