Jose Daniel Chávez-González, Víctor M. Flores-Núñez, Irving U. Merino-Espinoza, Laila Pamela Partida-Martínez
{"title":"Desert plants, arbuscular mycorrhizal fungi and associated bacteria: Exploring the diversity and role of symbiosis under drought","authors":"Jose Daniel Chávez-González, Víctor M. Flores-Núñez, Irving U. Merino-Espinoza, Laila Pamela Partida-Martínez","doi":"10.1111/1758-2229.13300","DOIUrl":null,"url":null,"abstract":"<p>Desert plants, such as <i>Agave tequilana</i>, <i>A. salmiana</i> and <i>Myrtillocactus geometrizans</i>, can survive harsh environmental conditions partly due to their symbiotic relationships with microorganisms, including arbuscular mycorrhizal fungi (AMF). Interestingly, some of these fungi also harbour endosymbiotic bacteria. Our research focused on investigating the diversity of these AMFs and their associated bacteria in these plants growing in arid soil. We found that agaves have a threefold higher AMF colonization than <i>M. geometrizans</i>. Metabarcoding techniques revealed that the composition of AMF communities was primarily influenced by the plant host, while the bacterial communities were more affected by the specific plant compartment or niche they inhabited. We identified both known and novel endofungal bacterial taxa, including Burkholderiales, and confirmed their presence within AMF spores using multiphoton microscopy. Our study also explored the effects of drought on the symbiosis between <i>A. tequilana</i> and AMF. We discovered that the severity of drought conditions could modulate the strength of this symbiosis and its outcomes for the plant holobiont. Severe drought conditions prevented the formation of this symbiosis, while moderate drought conditions promoted it, thereby conferring drought tolerance in <i>A. tequilana</i>. This research sheds light on the diversity of AMF and associated bacteria in Crassulacean Acid Metabolism (CAM) plants and underscores the crucial role of drought as a factor modulating the symbiosis between <i>A. tequilana</i> and AMF. Further research is needed to understand the role of endofungal bacteria in this response.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13300","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Desert plants, such as Agave tequilana, A. salmiana and Myrtillocactus geometrizans, can survive harsh environmental conditions partly due to their symbiotic relationships with microorganisms, including arbuscular mycorrhizal fungi (AMF). Interestingly, some of these fungi also harbour endosymbiotic bacteria. Our research focused on investigating the diversity of these AMFs and their associated bacteria in these plants growing in arid soil. We found that agaves have a threefold higher AMF colonization than M. geometrizans. Metabarcoding techniques revealed that the composition of AMF communities was primarily influenced by the plant host, while the bacterial communities were more affected by the specific plant compartment or niche they inhabited. We identified both known and novel endofungal bacterial taxa, including Burkholderiales, and confirmed their presence within AMF spores using multiphoton microscopy. Our study also explored the effects of drought on the symbiosis between A. tequilana and AMF. We discovered that the severity of drought conditions could modulate the strength of this symbiosis and its outcomes for the plant holobiont. Severe drought conditions prevented the formation of this symbiosis, while moderate drought conditions promoted it, thereby conferring drought tolerance in A. tequilana. This research sheds light on the diversity of AMF and associated bacteria in Crassulacean Acid Metabolism (CAM) plants and underscores the crucial role of drought as a factor modulating the symbiosis between A. tequilana and AMF. Further research is needed to understand the role of endofungal bacteria in this response.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.