Teemu A T Nurmirinta, Mikael J Turunen, Rami K Korhonen, Jussi Tohka, Mimmi K Liukkonen, Mika E Mononen
{"title":"Two-Stage Classification of Future Knee Osteoarthritis Severity After 8 Years Using MRI: Data from the Osteoarthritis Initiative.","authors":"Teemu A T Nurmirinta, Mikael J Turunen, Rami K Korhonen, Jussi Tohka, Mimmi K Liukkonen, Mika E Mononen","doi":"10.1007/s10439-024-03578-x","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, there are no methods or tools available in clinical practice for classifying future knee osteoarthritis (KOA). In this study, we aimed to fill this gap by classifying future KOA into three severity grades: KL01 (healthy), KL2 (moderate), and KL34 (severe) based on the Kellgren-Lawrance scale. Due to the complex nature of multiclass classification, we used a two-stage method, which separates the classification task into two binary classifications (KL01 vs. KL234 in the first stage and KL2 vs. KL34 in the second stage). Our machine learning (ML) model used two Balanced Random Forest algorithms and was trained with gender, age, height, weight, and quantitative knee morphology obtained from magnetic resonance imaging. Our training dataset comprised longitudinal 8-year follow-up data of 1213 knees from the Osteoarthritis Initiative. Through extensive experimentation with various feature combinations, we identified KL baseline and weight as the most essential features, while gender surprisingly proved to be one of the least influential feature. Our best classification model generated a weighted F1 score of 79.0% and a balanced accuracy of 65.9%. The area under the receiver operating characteristic curve was 83.0% for healthy (KL01) versus moderate (KL2) or severe (KL34) KOA patients and 86.6% for moderate (KL2) versus severe (KL34) KOA patients. We found a statistically significant difference in performance between our two-stage classification model and the traditional single-stage classification model. These findings demonstrate the encouraging results of our two-stage classification model for multiclass KOA severity classification, suggesting its potential application in clinical settings in future.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03578-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, there are no methods or tools available in clinical practice for classifying future knee osteoarthritis (KOA). In this study, we aimed to fill this gap by classifying future KOA into three severity grades: KL01 (healthy), KL2 (moderate), and KL34 (severe) based on the Kellgren-Lawrance scale. Due to the complex nature of multiclass classification, we used a two-stage method, which separates the classification task into two binary classifications (KL01 vs. KL234 in the first stage and KL2 vs. KL34 in the second stage). Our machine learning (ML) model used two Balanced Random Forest algorithms and was trained with gender, age, height, weight, and quantitative knee morphology obtained from magnetic resonance imaging. Our training dataset comprised longitudinal 8-year follow-up data of 1213 knees from the Osteoarthritis Initiative. Through extensive experimentation with various feature combinations, we identified KL baseline and weight as the most essential features, while gender surprisingly proved to be one of the least influential feature. Our best classification model generated a weighted F1 score of 79.0% and a balanced accuracy of 65.9%. The area under the receiver operating characteristic curve was 83.0% for healthy (KL01) versus moderate (KL2) or severe (KL34) KOA patients and 86.6% for moderate (KL2) versus severe (KL34) KOA patients. We found a statistically significant difference in performance between our two-stage classification model and the traditional single-stage classification model. These findings demonstrate the encouraging results of our two-stage classification model for multiclass KOA severity classification, suggesting its potential application in clinical settings in future.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.