Xiaoyi Shi, Tao Liao, Ye Chen, Jingrong Chen, Yan Liu, Jun Zhao, Junlong Dang, Qipeng Sun, Yunfeng Pan
{"title":"Dihydroartemisinin inhibits follicular helper T and B cells: implications for systemic lupus erythematosus treatment","authors":"Xiaoyi Shi, Tao Liao, Ye Chen, Jingrong Chen, Yan Liu, Jun Zhao, Junlong Dang, Qipeng Sun, Yunfeng Pan","doi":"10.1007/s12272-024-01505-1","DOIUrl":null,"url":null,"abstract":"<div><p>Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis mainly involves the aberrant activation of B cells through follicular helper T (Tfh) cells to produce pathogenic antibodies, which requires more effective and safe treatment methods. Dihydroartemisinin (DHA) is the main active ingredient of artemisinin and has immunosuppressive effects. In this study, in vitro experiments confirmed that DHA inhibited Tfh cell induction and weakened its auxiliary function in B cell differentiation; furthermore, DHA directly inhibited B cell activation, differentiation, and antibody production. Furthermore, a mouse model of SLE was established, and we confirmed that DHA significantly reduced the symptoms of SLE and lupus nephritis, and decreased serum immunoglobulin (Ig)G, IgM, IgA, and anti-dsDNA levels. Moreover, DHA reduced the frequencies of total Tfh cells, activated Tfh cells, and B cell lymphoma 6, and interleukin (IL)-21 levels in Tfh cells from the spleen and lymph nodes, as well as the levels of B cells, germinal center B cells, and plasma cells in the spleen, lymph nodes, and kidneys. Additionally, DHA inhibited Tfh cells by blocking IL-2-inducible T cell kinase (ITK) signaling and its downstream nuclear factor (NF)-κB, nuclear factor of activated T cell, and activating protein-1 pathways, and directly inhibited B cells by blocking Bruton’s tyrosine kinase (BTK) signaling and the downstream NF-κB and Myc pathways. Overall, our results demonstrated that DHA inhibited Tfh cells by blocking ITK signaling and also directly inhibited B cells by blocking BTK signaling. Therefore, reducing the production of pathogenic antibodies might effectively treat SLE.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-024-01505-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis mainly involves the aberrant activation of B cells through follicular helper T (Tfh) cells to produce pathogenic antibodies, which requires more effective and safe treatment methods. Dihydroartemisinin (DHA) is the main active ingredient of artemisinin and has immunosuppressive effects. In this study, in vitro experiments confirmed that DHA inhibited Tfh cell induction and weakened its auxiliary function in B cell differentiation; furthermore, DHA directly inhibited B cell activation, differentiation, and antibody production. Furthermore, a mouse model of SLE was established, and we confirmed that DHA significantly reduced the symptoms of SLE and lupus nephritis, and decreased serum immunoglobulin (Ig)G, IgM, IgA, and anti-dsDNA levels. Moreover, DHA reduced the frequencies of total Tfh cells, activated Tfh cells, and B cell lymphoma 6, and interleukin (IL)-21 levels in Tfh cells from the spleen and lymph nodes, as well as the levels of B cells, germinal center B cells, and plasma cells in the spleen, lymph nodes, and kidneys. Additionally, DHA inhibited Tfh cells by blocking IL-2-inducible T cell kinase (ITK) signaling and its downstream nuclear factor (NF)-κB, nuclear factor of activated T cell, and activating protein-1 pathways, and directly inhibited B cells by blocking Bruton’s tyrosine kinase (BTK) signaling and the downstream NF-κB and Myc pathways. Overall, our results demonstrated that DHA inhibited Tfh cells by blocking ITK signaling and also directly inhibited B cells by blocking BTK signaling. Therefore, reducing the production of pathogenic antibodies might effectively treat SLE.
系统性红斑狼疮(SLE)是一种常见的自身免疫性疾病,其发病机制主要是B细胞通过滤泡辅助T细胞(Tfh)异常激活产生致病性抗体,因此需要更有效、更安全的治疗方法。双氢青蒿素(DHA)是青蒿素的主要活性成分,具有免疫抑制作用。在这项研究中,体外实验证实 DHA 可抑制 Tfh 细胞的诱导,削弱其在 B 细胞分化中的辅助功能;此外,DHA 还可直接抑制 B 细胞的活化、分化和抗体生成。此外,我们还建立了一个系统性红斑狼疮小鼠模型,并证实 DHA 能显著减轻系统性红斑狼疮和狼疮肾炎的症状,降低血清免疫球蛋白 (Ig)G、IgM、IgA 和抗dsDNA 水平。此外,DHA 还能降低总 Tfh 细胞、活化 Tfh 细胞和 B 细胞淋巴瘤 6 的频率,降低脾脏和淋巴结中 Tfh 细胞的白细胞介素(IL)-21 水平,以及脾脏、淋巴结和肾脏中 B 细胞、生殖中心 B 细胞和浆细胞的水平。此外,DHA通过阻断IL-2诱导的T细胞激酶(ITK)信号传导及其下游的核因子(NF)-κB、活化T细胞核因子和活化蛋白-1通路抑制Tfh细胞,并通过阻断布鲁顿酪氨酸激酶(BTK)信号传导及其下游的NF-κB和Myc通路直接抑制B细胞。总之,我们的研究结果表明,DHA 可通过阻断 ITK 信号抑制 Tfh 细胞,也可通过阻断 BTK 信号直接抑制 B 细胞。因此,减少致病抗体的产生可有效治疗系统性红斑狼疮。
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.