Predicting intercellular communication based on metabolite-related ligand-receptor interactions with MRCLinkdb.

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2024-07-08 DOI:10.1186/s12915-024-01950-w
Yuncong Zhang, Yu Yang, Liping Ren, Meixiao Zhan, Taoping Sun, Quan Zou, Yang Zhang
{"title":"Predicting intercellular communication based on metabolite-related ligand-receptor interactions with MRCLinkdb.","authors":"Yuncong Zhang, Yu Yang, Liping Ren, Meixiao Zhan, Taoping Sun, Quan Zou, Yang Zhang","doi":"10.1186/s12915-024-01950-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolite-associated cell communications play critical roles in maintaining human biological function. However, most existing tools and resources focus only on ligand-receptor interaction pairs where both partners are proteinaceous, neglecting other non-protein molecules. To address this gap, we introduce the MRCLinkdb database and algorithm, which aggregates and organizes data related to non-protein L-R interactions in cell-cell communication, providing a valuable resource for predicting intercellular communication based on metabolite-related ligand-receptor interactions.</p><p><strong>Results: </strong>Here, we manually curated the metabolite-ligand-receptor (ML-R) interactions from the literature and known databases, ultimately collecting over 790 human and 670 mouse ML-R interactions. Additionally, we compiled information on over 1900 enzymes and 260 transporter entries associated with these metabolites. We developed Metabolite-Receptor based Cell Link Database (MRCLinkdb) to store these ML-R interactions data. Meanwhile, the platform also offers extensive information for presenting ML-R interactions, including fundamental metabolite information and the overall expression landscape of metabolite-associated gene sets (such as receptor, enzymes, and transporter proteins) based on single-cell transcriptomics sequencing (covering 35 human and 26 mouse tissues, 52 human and 44 mouse cell types) and bulk RNA-seq/microarray data (encompassing 62 human and 39 mouse tissues). Furthermore, MRCLinkdb introduces a web server dedicated to the analysis of intercellular communication based on ML-R interactions. MRCLinkdb is freely available at https://www.cellknowledge.com.cn/mrclinkdb/ .</p><p><strong>Conclusions: </strong>In addition to supplementing ligand-receptor databases, MRCLinkdb may provide new perspectives for decoding the intercellular communication and advancing related prediction tools based on ML-R interactions.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232326/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-01950-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metabolite-associated cell communications play critical roles in maintaining human biological function. However, most existing tools and resources focus only on ligand-receptor interaction pairs where both partners are proteinaceous, neglecting other non-protein molecules. To address this gap, we introduce the MRCLinkdb database and algorithm, which aggregates and organizes data related to non-protein L-R interactions in cell-cell communication, providing a valuable resource for predicting intercellular communication based on metabolite-related ligand-receptor interactions.

Results: Here, we manually curated the metabolite-ligand-receptor (ML-R) interactions from the literature and known databases, ultimately collecting over 790 human and 670 mouse ML-R interactions. Additionally, we compiled information on over 1900 enzymes and 260 transporter entries associated with these metabolites. We developed Metabolite-Receptor based Cell Link Database (MRCLinkdb) to store these ML-R interactions data. Meanwhile, the platform also offers extensive information for presenting ML-R interactions, including fundamental metabolite information and the overall expression landscape of metabolite-associated gene sets (such as receptor, enzymes, and transporter proteins) based on single-cell transcriptomics sequencing (covering 35 human and 26 mouse tissues, 52 human and 44 mouse cell types) and bulk RNA-seq/microarray data (encompassing 62 human and 39 mouse tissues). Furthermore, MRCLinkdb introduces a web server dedicated to the analysis of intercellular communication based on ML-R interactions. MRCLinkdb is freely available at https://www.cellknowledge.com.cn/mrclinkdb/ .

Conclusions: In addition to supplementing ligand-receptor databases, MRCLinkdb may provide new perspectives for decoding the intercellular communication and advancing related prediction tools based on ML-R interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 MRCLinkdb 根据代谢物相关配体与受体的相互作用预测细胞间通讯。
背景:代谢物相关的细胞通讯在维持人体生物功能方面发挥着关键作用。然而,现有的大多数工具和资源只关注配体-受体相互作用对(配体和受体均为蛋白质),而忽视了其他非蛋白质分子。为了填补这一空白,我们引入了MRCLinkdb数据库和算法,它聚合并整理了细胞-细胞通讯中与非蛋白L-R相互作用相关的数据,为基于代谢物相关配体-受体相互作用预测细胞间通讯提供了宝贵的资源:在这里,我们从文献和已知数据库中手动整理了代谢物-配体-受体(ML-R)相互作用,最终收集了超过 790 种人类和 670 种小鼠的 ML-R 相互作用。此外,我们还汇编了与这些代谢物相关的 1900 多种酶和 260 种转运体的信息。我们开发了基于代谢受体的细胞链接数据库(MRCLinkdb)来存储这些 ML-R 相互作用数据。同时,该平台还提供广泛的信息来展示 ML-R 相互作用,包括基本代谢物信息和代谢物相关基因组(如受体、酶和转运蛋白)的整体表达情况,这些信息基于单细胞转录组学测序(涵盖 35 种人类和 26 种小鼠组织、52 种人类和 44 种小鼠细胞类型)和批量 RNA-seq/microarray 数据(涵盖 62 种人类和 39 种小鼠组织)。此外,MRCLinkdb 还引入了一个网络服务器,专门用于分析基于 ML-R 相互作用的细胞间通讯。MRCLinkdb 可在 https://www.cellknowledge.com.cn/mrclinkdb/ .Conclusions 免费获取:除了补充配体-受体数据库外,MRCLinkdb 还为解码细胞间通讯和推进基于 ML-R 相互作用的相关预测工具提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
Novel function of single-target regulator NorR involved in swarming motility and biofilm formation revealed in Vibrio alginolyticus. Hibernation reduces GABA signaling in the brainstem to enhance motor activity of breathing at cool temperatures. A powerful and versatile new fixation protocol for immunostaining and in situ hybridization that preserves delicate tissues. Bridging chemical structure and conceptual knowledge enables accurate prediction of compound-protein interaction. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1