Enrique González-Bernardo, Gregorio Moreno-Rueda, Carlos Camacho, Jesús Martínez-Padilla, Jaime Potti, David Canal
{"title":"Environmental conditions influence host-parasite interactions and host fitness in a migratory passerine.","authors":"Enrique González-Bernardo, Gregorio Moreno-Rueda, Carlos Camacho, Jesús Martínez-Padilla, Jaime Potti, David Canal","doi":"10.1111/1749-4877.12864","DOIUrl":null,"url":null,"abstract":"<p><p>The study of host-parasite co-evolution is a central topic in evolutionary ecology. However, research is still fragmented and the extent to which parasites influence host life history is debated. One reason for this incomplete picture is the frequent omission of environmental conditions in studies analyzing host-parasite dynamics, which may influence the exposure to or effects of parasitism. To contribute to elucidating the largely unresolved question of how environmental conditions are related to the prevalence and intensity of infestation and their impact on hosts, we took advantage of 25 years of monitoring of a breeding population of pied flycatchers, Ficedula hypoleuca, in a Mediterranean area of central Spain. We investigated the influence of temperature and precipitation during the nestling stage at a local scale on the intensity of blowfly (Protocalliphora azurea) parasitism during the nestling stage. In addition, we explored the mediating effect of extrinsic and intrinsic factors and blowfly parasitism on breeding success (production of fledglings) and offspring quality (nestling mass on day 13). The prevalence and intensity of blowfly parasitism were associated with different intrinsic (host breeding date, brood size) and extrinsic (breeding habitat, mean temperature) factors. Specifically, higher average temperatures during the nestling phase were associated with lower intensities of parasitism, which may be explained by changes in blowflies' activity or larval developmental success. In contrast, no relationship was found between the prevalence of parasitism and any of the environmental variables evaluated. Hosts that experienced high parasitism intensities in their broods produced more fledglings as temperature increased, suggesting that physiological responses to severe parasitism during nestling development might be enhanced in warmer conditions. The weight of fledglings was, however, unrelated to the interactive effect of parasitism intensity and environmental conditions. Overall, our results highlight the temperature dependence of parasite-host interactions and the importance of considering multiple fitness indicators and climate-mediated effects to understand their complex implications for avian fitness and population dynamics.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12864","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of host-parasite co-evolution is a central topic in evolutionary ecology. However, research is still fragmented and the extent to which parasites influence host life history is debated. One reason for this incomplete picture is the frequent omission of environmental conditions in studies analyzing host-parasite dynamics, which may influence the exposure to or effects of parasitism. To contribute to elucidating the largely unresolved question of how environmental conditions are related to the prevalence and intensity of infestation and their impact on hosts, we took advantage of 25 years of monitoring of a breeding population of pied flycatchers, Ficedula hypoleuca, in a Mediterranean area of central Spain. We investigated the influence of temperature and precipitation during the nestling stage at a local scale on the intensity of blowfly (Protocalliphora azurea) parasitism during the nestling stage. In addition, we explored the mediating effect of extrinsic and intrinsic factors and blowfly parasitism on breeding success (production of fledglings) and offspring quality (nestling mass on day 13). The prevalence and intensity of blowfly parasitism were associated with different intrinsic (host breeding date, brood size) and extrinsic (breeding habitat, mean temperature) factors. Specifically, higher average temperatures during the nestling phase were associated with lower intensities of parasitism, which may be explained by changes in blowflies' activity or larval developmental success. In contrast, no relationship was found between the prevalence of parasitism and any of the environmental variables evaluated. Hosts that experienced high parasitism intensities in their broods produced more fledglings as temperature increased, suggesting that physiological responses to severe parasitism during nestling development might be enhanced in warmer conditions. The weight of fledglings was, however, unrelated to the interactive effect of parasitism intensity and environmental conditions. Overall, our results highlight the temperature dependence of parasite-host interactions and the importance of considering multiple fitness indicators and climate-mediated effects to understand their complex implications for avian fitness and population dynamics.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations