A model for identifying potentially inappropriate medication used in older people with dementia: a machine learning study.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY International Journal of Clinical Pharmacy Pub Date : 2024-08-01 Epub Date: 2024-07-09 DOI:10.1007/s11096-024-01730-0
Qiaozhi Hu, Mengnan Zhao, Fei Teng, Gongchao Lin, Zhaohui Jin, Ting Xu
{"title":"A model for identifying potentially inappropriate medication used in older people with dementia: a machine learning study.","authors":"Qiaozhi Hu, Mengnan Zhao, Fei Teng, Gongchao Lin, Zhaohui Jin, Ting Xu","doi":"10.1007/s11096-024-01730-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Older adults with dementia often face the risk of potentially inappropriate medication (PIM) use. The quality of PIM evaluation is hindered by researchers' unfamiliarity with evaluation criteria for inappropriate drug use. While traditional machine learning algorithms can enhance evaluation quality, they struggle with the multilabel nature of prescription data.</p><p><strong>Aim: </strong>This study aimed to combine six machine learning algorithms and three multilabel classification models to identify correlations in prescription information and develop an optimal model to identify PIMs in older adults with dementia.</p><p><strong>Method: </strong>This study was conducted from January 1, 2020, to December 31, 2020. We used cluster sampling to obtain prescription data from patients 65 years and older with dementia. We assessed PIMs using the 2019 Beers criteria, the most authoritative and widely recognized standard for PIM detection. Our modeling process used three problem transformation methods (binary relevance, label powerset, and classifier chain) and six classification algorithms.</p><p><strong>Results: </strong>We identified 18,338 older dementia patients and 36 PIMs types. The classifier chain + categorical boosting (CatBoost) model demonstrated superior performance, with the highest accuracy (97.93%), precision (95.39%), recall (94.07%), F1 score (95.69%), and subset accuracy values (97.41%), along with the lowest Hamming loss value (0.0011) and an acceptable duration of the operation (371s).</p><p><strong>Conclusion: </strong>This research introduces a pioneering CC + CatBoost warning model for PIMs in older dementia patients, utilizing machine-learning techniques. This model enables a quick and precise identification of PIMs, simplifying the manual evaluation process.</p>","PeriodicalId":13828,"journal":{"name":"International Journal of Clinical Pharmacy","volume":" ","pages":"937-946"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clinical Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11096-024-01730-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Older adults with dementia often face the risk of potentially inappropriate medication (PIM) use. The quality of PIM evaluation is hindered by researchers' unfamiliarity with evaluation criteria for inappropriate drug use. While traditional machine learning algorithms can enhance evaluation quality, they struggle with the multilabel nature of prescription data.

Aim: This study aimed to combine six machine learning algorithms and three multilabel classification models to identify correlations in prescription information and develop an optimal model to identify PIMs in older adults with dementia.

Method: This study was conducted from January 1, 2020, to December 31, 2020. We used cluster sampling to obtain prescription data from patients 65 years and older with dementia. We assessed PIMs using the 2019 Beers criteria, the most authoritative and widely recognized standard for PIM detection. Our modeling process used three problem transformation methods (binary relevance, label powerset, and classifier chain) and six classification algorithms.

Results: We identified 18,338 older dementia patients and 36 PIMs types. The classifier chain + categorical boosting (CatBoost) model demonstrated superior performance, with the highest accuracy (97.93%), precision (95.39%), recall (94.07%), F1 score (95.69%), and subset accuracy values (97.41%), along with the lowest Hamming loss value (0.0011) and an acceptable duration of the operation (371s).

Conclusion: This research introduces a pioneering CC + CatBoost warning model for PIMs in older dementia patients, utilizing machine-learning techniques. This model enables a quick and precise identification of PIMs, simplifying the manual evaluation process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别老年痴呆症患者潜在用药不当的模型:一项机器学习研究。
背景:患有痴呆症的老年人经常面临潜在用药不当(PIM)的风险。由于研究人员不熟悉不适当用药的评估标准,因此影响了不适当用药评估的质量。本研究旨在结合六种机器学习算法和三种多标签分类模型来识别处方信息中的相关性,并开发一种最佳模型来识别老年痴呆症患者的 PIM:本研究于 2020 年 1 月 1 日至 2020 年 12 月 31 日进行。我们采用集群抽样的方式获取 65 岁及以上痴呆症患者的处方数据。我们使用 2019 Beers 标准对 PIM 进行了评估,该标准是最权威、最广为人知的 PIM 检测标准。我们的建模过程使用了三种问题转换方法(二元相关性、标签幂集和分类器链)和六种分类算法:我们确定了 18338 名老年痴呆症患者和 36 种 PIMs 类型。分类器链+分类提升(CatBoost)模型表现优异,准确率(97.93%)、精确率(95.39%)、召回率(94.07%)、F1得分(95.69%)和子集准确率值(97.41%)最高,汉明损失值(0.0011)最低,操作时间(371s)可接受:本研究利用机器学习技术,针对老年痴呆症患者的 PIMs 引入了一种开创性的 CC + CatBoost 预警模型。该模型可快速、准确地识别 PIM,简化人工评估过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
8.30%
发文量
131
审稿时长
4-8 weeks
期刊介绍: The International Journal of Clinical Pharmacy (IJCP) offers a platform for articles on research in Clinical Pharmacy, Pharmaceutical Care and related practice-oriented subjects in the pharmaceutical sciences. IJCP is a bi-monthly, international, peer-reviewed journal that publishes original research data, new ideas and discussions on pharmacotherapy and outcome research, clinical pharmacy, pharmacoepidemiology, pharmacoeconomics, the clinical use of medicines, medical devices and laboratory tests, information on medicines and medical devices information, pharmacy services research, medication management, other clinical aspects of pharmacy. IJCP publishes original Research articles, Review articles , Short research reports, Commentaries, book reviews, and Letters to the Editor. International Journal of Clinical Pharmacy is affiliated with the European Society of Clinical Pharmacy (ESCP). ESCP promotes practice and research in Clinical Pharmacy, especially in Europe. The general aim of the society is to advance education, practice and research in Clinical Pharmacy . Until 2010 the journal was called Pharmacy World & Science.
期刊最新文献
European Society of Clinical Pharmacy: 'the prescribing pharmacist: a prescription for better patient care'. Diagnostic evaluation of hypersensitivity reactions to arylpropionic acid derivatives: a descriptive observational study focusing on clinical characteristics and potential risk factors in children. Liver injury associated with endothelin receptor antagonists: a pharmacovigilance study based on FDA adverse event reporting system data. Drug-related emergency department visits: external validation of an assessment tool in a general emergency department population. Identification of seniors at risk (ISAR) score and potentially inappropriate prescribing: a retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1