{"title":"A model for identifying potentially inappropriate medication used in older people with dementia: a machine learning study.","authors":"Qiaozhi Hu, Mengnan Zhao, Fei Teng, Gongchao Lin, Zhaohui Jin, Ting Xu","doi":"10.1007/s11096-024-01730-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Older adults with dementia often face the risk of potentially inappropriate medication (PIM) use. The quality of PIM evaluation is hindered by researchers' unfamiliarity with evaluation criteria for inappropriate drug use. While traditional machine learning algorithms can enhance evaluation quality, they struggle with the multilabel nature of prescription data.</p><p><strong>Aim: </strong>This study aimed to combine six machine learning algorithms and three multilabel classification models to identify correlations in prescription information and develop an optimal model to identify PIMs in older adults with dementia.</p><p><strong>Method: </strong>This study was conducted from January 1, 2020, to December 31, 2020. We used cluster sampling to obtain prescription data from patients 65 years and older with dementia. We assessed PIMs using the 2019 Beers criteria, the most authoritative and widely recognized standard for PIM detection. Our modeling process used three problem transformation methods (binary relevance, label powerset, and classifier chain) and six classification algorithms.</p><p><strong>Results: </strong>We identified 18,338 older dementia patients and 36 PIMs types. The classifier chain + categorical boosting (CatBoost) model demonstrated superior performance, with the highest accuracy (97.93%), precision (95.39%), recall (94.07%), F1 score (95.69%), and subset accuracy values (97.41%), along with the lowest Hamming loss value (0.0011) and an acceptable duration of the operation (371s).</p><p><strong>Conclusion: </strong>This research introduces a pioneering CC + CatBoost warning model for PIMs in older dementia patients, utilizing machine-learning techniques. This model enables a quick and precise identification of PIMs, simplifying the manual evaluation process.</p>","PeriodicalId":13828,"journal":{"name":"International Journal of Clinical Pharmacy","volume":" ","pages":"937-946"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clinical Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11096-024-01730-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Older adults with dementia often face the risk of potentially inappropriate medication (PIM) use. The quality of PIM evaluation is hindered by researchers' unfamiliarity with evaluation criteria for inappropriate drug use. While traditional machine learning algorithms can enhance evaluation quality, they struggle with the multilabel nature of prescription data.
Aim: This study aimed to combine six machine learning algorithms and three multilabel classification models to identify correlations in prescription information and develop an optimal model to identify PIMs in older adults with dementia.
Method: This study was conducted from January 1, 2020, to December 31, 2020. We used cluster sampling to obtain prescription data from patients 65 years and older with dementia. We assessed PIMs using the 2019 Beers criteria, the most authoritative and widely recognized standard for PIM detection. Our modeling process used three problem transformation methods (binary relevance, label powerset, and classifier chain) and six classification algorithms.
Results: We identified 18,338 older dementia patients and 36 PIMs types. The classifier chain + categorical boosting (CatBoost) model demonstrated superior performance, with the highest accuracy (97.93%), precision (95.39%), recall (94.07%), F1 score (95.69%), and subset accuracy values (97.41%), along with the lowest Hamming loss value (0.0011) and an acceptable duration of the operation (371s).
Conclusion: This research introduces a pioneering CC + CatBoost warning model for PIMs in older dementia patients, utilizing machine-learning techniques. This model enables a quick and precise identification of PIMs, simplifying the manual evaluation process.
期刊介绍:
The International Journal of Clinical Pharmacy (IJCP) offers a platform for articles on research in Clinical Pharmacy, Pharmaceutical Care and related practice-oriented subjects in the pharmaceutical sciences.
IJCP is a bi-monthly, international, peer-reviewed journal that publishes original research data, new ideas and discussions on pharmacotherapy and outcome research, clinical pharmacy, pharmacoepidemiology, pharmacoeconomics, the clinical use of medicines, medical devices and laboratory tests, information on medicines and medical devices information, pharmacy services research, medication management, other clinical aspects of pharmacy.
IJCP publishes original Research articles, Review articles , Short research reports, Commentaries, book reviews, and Letters to the Editor.
International Journal of Clinical Pharmacy is affiliated with the European Society of Clinical Pharmacy (ESCP). ESCP promotes practice and research in Clinical Pharmacy, especially in Europe. The general aim of the society is to advance education, practice and research in Clinical Pharmacy .
Until 2010 the journal was called Pharmacy World & Science.