{"title":"Decreased DTI-ALPS index in delirium: a preliminary MRI study.","authors":"Ye Tu, Renjie Song, Fei Xiong, Xiaoyun Fu","doi":"10.1007/s00234-024-03415-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Delirium is linked to brain abnormalities, yet the role of the glymphatic system is not well understood. This study aims to examine alterations in brain physiology in delirium by using diffusion-tensor imaging (DTI) to assess water diffusion along the perivascular space (ALPS) and to explore its correlation with clinical symptoms.</p><p><strong>Methods: </strong>We examined 15 patients with delirium and 15 healthy controls, measuring water diffusion metrics along the x-, y-, and z-axes in both projection and association fibers to determine the DTI-ALPS index. We used a general linear model, adjusted for age and sex, to compare the DTI-ALPS index between groups. We also investigated the relationship between the DTI-ALPS index and clinical symptoms using partial correlations.</p><p><strong>Results: </strong>Patients with delirium exhibited significantly lower DTI-ALPS indices compared to healthy controls (1.25 ± 0.15 vs. 1.38 ± 0.10, t = 2.903, p = 0.007; 1.27 ± 0.16 vs. 1.39 ± 0.08, 1.22 ± 0.16 vs. 1.37 ± 0.14, t = 2.617, p = 0.014; t = 2.719, p = 0.011; respectively). However, there was no significant correlation between the DTI-ALPS index and clinical symptoms.</p><p><strong>Conclusion: </strong>Our findings indicate a decreased DTI-ALPS index in patients with delirium, suggesting potential alterations in brain physiology that may contribute to the pathophysiology of delirium. This study provides new insights into the mechanisms underlying delirium.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":"1729-1735"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03415-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Delirium is linked to brain abnormalities, yet the role of the glymphatic system is not well understood. This study aims to examine alterations in brain physiology in delirium by using diffusion-tensor imaging (DTI) to assess water diffusion along the perivascular space (ALPS) and to explore its correlation with clinical symptoms.
Methods: We examined 15 patients with delirium and 15 healthy controls, measuring water diffusion metrics along the x-, y-, and z-axes in both projection and association fibers to determine the DTI-ALPS index. We used a general linear model, adjusted for age and sex, to compare the DTI-ALPS index between groups. We also investigated the relationship between the DTI-ALPS index and clinical symptoms using partial correlations.
Results: Patients with delirium exhibited significantly lower DTI-ALPS indices compared to healthy controls (1.25 ± 0.15 vs. 1.38 ± 0.10, t = 2.903, p = 0.007; 1.27 ± 0.16 vs. 1.39 ± 0.08, 1.22 ± 0.16 vs. 1.37 ± 0.14, t = 2.617, p = 0.014; t = 2.719, p = 0.011; respectively). However, there was no significant correlation between the DTI-ALPS index and clinical symptoms.
Conclusion: Our findings indicate a decreased DTI-ALPS index in patients with delirium, suggesting potential alterations in brain physiology that may contribute to the pathophysiology of delirium. This study provides new insights into the mechanisms underlying delirium.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.