Genome-wide atlas of rust resistance loci in wheat.

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-07-09 DOI:10.1007/s00122-024-04689-8
Jingyang Tong, Cong Zhao, Dan Liu, Dilani T Jambuthenne, Mengjing Sun, Eric Dinglasan, Sambasivam K Periyannan, Lee T Hickey, Ben J Hayes
{"title":"Genome-wide atlas of rust resistance loci in wheat.","authors":"Jingyang Tong, Cong Zhao, Dan Liu, Dilani T Jambuthenne, Mengjing Sun, Eric Dinglasan, Sambasivam K Periyannan, Lee T Hickey, Ben J Hayes","doi":"10.1007/s00122-024-04689-8","DOIUrl":null,"url":null,"abstract":"<p><p>Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 8","pages":"179"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04689-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小麦抗锈病基因位点的全基因组图谱。
叶锈病、条锈病/黄锈病和茎锈病等锈病严重影响小麦(Triticum aestivum L.)的产量,每年都会造成巨大的经济损失。培育和推广具有遗传抗性的栽培品种是控制这些病害的最有效、最可持续的方法。利用基因组学、制图和克隆策略的最新进展,确定了大量遗传位点,小麦育种者选择抗锈病的遗传工具包迅速扩大。本综述的目的是建立一个小麦基因组图谱,全面总结报告的与锈病抗性相关的基因位点。我们的图集汇总了过去二十年中170篇论文中三种锈病的定量性状位点(QTL)和特征基因。根据最新的小麦参考基因组(IWGSC RefSeq v2.1),在小麦的 21 条染色体上共定位了 920 个 QTL 或抗性基因。有趣的是,26 个基因组区域包含多个锈病基因座,这表明它们可能对两种或多种锈病具有多效作用。我们讨论了利用这些丰富的遗传信息有效利用抗性来源的一系列策略,包括通过基因组信息堆叠理想的多重 QTL 来培育对锈病具有更强抗性的小麦栽培品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
QTL-seq and QTL mapping identify a new locus for Cercospora leaf spot (Cercospora canescens) resistance in mungbean (Vigna radiata) and a cluster of Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. Cytological mapping of a powdery mildew resistance locus PmRc1 based on wheat-Roegneria ciliaris structural rearrangement library. Exploiting light energy utilization strategies in Populus simonii through multitrait-GWAS: insights from stochastic differential models. Stacking beneficial haplotypes from the Vavilov wheat collection to accelerate breeding for multiple disease resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1