{"title":"On Taylor’s formulas in fractional calculus: overview and characterization for the Caputo derivative","authors":"Roberto Nuca, Matteo Parsani","doi":"10.1007/s13540-024-00311-2","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses some aspects of Taylor’s formulas in fractional calculus, focusing on use of Caputo’s definition. Such formulas consist of a polynomial expansion whose coefficients are values of the fractional derivative evaluated at its starting point multiplied by some coefficients determined through the Gamma function. The properties of fractional derivatives heavily affect the expansion’s coefficients. In the first part of the paper, we review the currently available formulas in fractional calculus with a particular focus on the Caputo derivative. In the second part, we prove why the notion of sequential fractional derivative (i.e., <i>n</i>-fold fractional derivative) is required to build Taylor expansions in terms of fractional derivatives. Such properties do not seem to appear in the literature. Furthermore, some new properties of the expansion coefficients are also shown together with some computational examples in Wolfram Mathematica.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"20 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00311-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discusses some aspects of Taylor’s formulas in fractional calculus, focusing on use of Caputo’s definition. Such formulas consist of a polynomial expansion whose coefficients are values of the fractional derivative evaluated at its starting point multiplied by some coefficients determined through the Gamma function. The properties of fractional derivatives heavily affect the expansion’s coefficients. In the first part of the paper, we review the currently available formulas in fractional calculus with a particular focus on the Caputo derivative. In the second part, we prove why the notion of sequential fractional derivative (i.e., n-fold fractional derivative) is required to build Taylor expansions in terms of fractional derivatives. Such properties do not seem to appear in the literature. Furthermore, some new properties of the expansion coefficients are also shown together with some computational examples in Wolfram Mathematica.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.