Automated Continuous Crystallization Platform with Real-Time Particle Size Analysis via Laser Diffraction

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2024-07-09 DOI:10.1021/acs.oprd.4c00110
Sayan Pal, Arun Pankajakshan, Maximilian O. Besenhard, Nicholas Snead, Juan Almeida, Shorooq Abukhamees, Duncan Craig, Federico Galvanin, Asterios Gavriilidis and Luca Mazzei*, 
{"title":"Automated Continuous Crystallization Platform with Real-Time Particle Size Analysis via Laser Diffraction","authors":"Sayan Pal,&nbsp;Arun Pankajakshan,&nbsp;Maximilian O. Besenhard,&nbsp;Nicholas Snead,&nbsp;Juan Almeida,&nbsp;Shorooq Abukhamees,&nbsp;Duncan Craig,&nbsp;Federico Galvanin,&nbsp;Asterios Gavriilidis and Luca Mazzei*,&nbsp;","doi":"10.1021/acs.oprd.4c00110","DOIUrl":null,"url":null,"abstract":"<p >The fourth industrial revolution is gaining momentum in the pharmaceutical industry. However, particulate processes and suspension handling remain big challenges for automation and the implementation of real-time particle size analysis. Moreover, the development of antisolvent crystallization processes is often limited by the associated time-intensive experimental screenings. This work demonstrates a fully automated modular crystallization platform that overcomes these bottlenecks. The system combines automated crystallization, sample preparation, and immediate crystal size analysis via online laser diffraction (LD) and provides a technology for rapidly screening crystallization process parameters and crystallizer design spaces with minimal experimental effort. During the LD measurements, to avoid multiple scattering events, crystal suspension samples are diluted automatically. Multiple software tools, i.e., LabVIEW, Python, and PharmaMV, and logic algorithms are integrated in the platform to facilitate automated control of all the sensors and equipment, enabling fully automated operation. A customized graphical user interface is provided to operate the crystallization platform automatically and to visualize the measured crystal size and the crystal size distribution of the suspension. Antisolvent crystallization of ibuprofen, with ethanol as solvent and water with Soluplus (an additive) as antisolvent, is used as a case study. The platform is demonstrated for antisolvent crystallization of small ibuprofen crystals in a confined impinging jet crystallizer, performing automated preplanned user-defined experiments with online LD analysis.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.4c00110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00110","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The fourth industrial revolution is gaining momentum in the pharmaceutical industry. However, particulate processes and suspension handling remain big challenges for automation and the implementation of real-time particle size analysis. Moreover, the development of antisolvent crystallization processes is often limited by the associated time-intensive experimental screenings. This work demonstrates a fully automated modular crystallization platform that overcomes these bottlenecks. The system combines automated crystallization, sample preparation, and immediate crystal size analysis via online laser diffraction (LD) and provides a technology for rapidly screening crystallization process parameters and crystallizer design spaces with minimal experimental effort. During the LD measurements, to avoid multiple scattering events, crystal suspension samples are diluted automatically. Multiple software tools, i.e., LabVIEW, Python, and PharmaMV, and logic algorithms are integrated in the platform to facilitate automated control of all the sensors and equipment, enabling fully automated operation. A customized graphical user interface is provided to operate the crystallization platform automatically and to visualize the measured crystal size and the crystal size distribution of the suspension. Antisolvent crystallization of ibuprofen, with ethanol as solvent and water with Soluplus (an additive) as antisolvent, is used as a case study. The platform is demonstrated for antisolvent crystallization of small ibuprofen crystals in a confined impinging jet crystallizer, performing automated preplanned user-defined experiments with online LD analysis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过激光衍射进行实时粒度分析的自动化连续结晶平台
第四次工业革命在制药业的发展势头日益强劲。然而,颗粒工艺和悬浮液处理仍然是自动化和实施实时粒度分析的巨大挑战。此外,抗溶剂结晶工艺的开发往往受限于相关的时间密集型实验筛选。这项工作展示了一个能克服这些瓶颈的全自动模块化结晶平台。该系统将自动结晶、样品制备和通过在线激光衍射(LD)进行即时晶体尺寸分析结合在一起,提供了一种以最小的实验工作量快速筛选结晶工艺参数和结晶器设计空间的技术。在 LD 测量过程中,为避免多重散射事件,晶体悬浮样品会自动稀释。该平台集成了 LabVIEW、Python 和 PharmaMV 等多种软件工具和逻辑算法,便于对所有传感器和设备进行自动控制,从而实现全自动操作。定制的图形用户界面可自动操作结晶平台,并直观显示测量的晶体尺寸和悬浮液的晶体尺寸分布。以布洛芬的反溶剂结晶为例进行研究,乙醇作为溶剂,水和 Soluplus(添加剂)作为反溶剂。该平台演示了在密闭喷射结晶器中对小布洛芬晶体进行反溶剂结晶的过程,通过在线 LD 分析执行预先计划的用户定义自动实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Early-Stage Flow Process Development of a Key Intermediate toward PF-07265807, an AXL-MER Inhibitor Oncology Candidate Fully Continuous Flow Synthesis of 2′-Deoxy-2′-fluoro-arabinoside: A Key Intermediate of Azvudine Sustainable Manufacturing of trans-4-Trifluoromethyl-l-proline via Stereochemical Editing: A Combined In Silico and Experimental Approach Synthetic Development and Scale-Up of a Complex Pyrazole Fragment of Lenacapavir Synthesis of Lenacapavir Sodium: Active Pharmaceutical Ingredient Process Development and Scale-up
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1