Rational Design of Cyanine-Based Fluorogenic Dimers to Reduce Nonspecific Interactions with Albumin and Lipid Bilayers: Application to Highly Sensitive Imaging of GPCRs in Living Cells.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Bioconjugate Pub Date : 2024-07-09 DOI:10.1021/acs.bioconjchem.4c00147
Yann Berthomé, Julie Gerber, Fabien Hanser, Stéphanie Riché, Nicolas Humbert, Christel Valencia, Pascal Villa, Julie Karpenko, Océane Florès, Dominique Bonnet
{"title":"Rational Design of Cyanine-Based Fluorogenic Dimers to Reduce Nonspecific Interactions with Albumin and Lipid Bilayers: Application to Highly Sensitive Imaging of GPCRs in Living Cells.","authors":"Yann Berthomé, Julie Gerber, Fabien Hanser, Stéphanie Riché, Nicolas Humbert, Christel Valencia, Pascal Villa, Julie Karpenko, Océane Florès, Dominique Bonnet","doi":"10.1021/acs.bioconjchem.4c00147","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorogenic dimers with polarity-sensitive folding are powerful probes for live-cell bioimaging. They switch on their fluorescence only after interacting with their targets, thus leading to a high signal-to-noise ratio in wash-free bioimaging. We previously reported the first near-infrared fluorogenic dimers derived from cyanine 5.5 dyes for the optical detection of G protein-coupled receptors. Owing to their hydrophobic character, these dimers are prone to form nonspecific interactions with proteins such as albumin and with the lipid bilayer of the cell membrane resulting in a residual background fluorescence in complex biological media. Herein, we report the rational design of new fluorogenic dimers derived from cyanine 5. By modulating the chemical structure of the cyanine units, we discovered that the two asymmetric cyanine 5.25 dyes were able to form intramolecular H-aggregates and self-quenched in aqueous media. Moreover, the resulting original dimeric probes enabled a significant reduction of the nonspecific interactions with bovine serum albumin and lipid bilayers compared with the first generation of cyanine 5.5 dimers. Finally, the optimized asymmetric fluorogenic dimer was grafted to carbetocin for the specific imaging of the oxytocin receptor under no-wash conditions directly in cell culture media, notably improving the signal-to-background ratio compared with the previous generation of cyanine 5.5 dimers.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00147","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorogenic dimers with polarity-sensitive folding are powerful probes for live-cell bioimaging. They switch on their fluorescence only after interacting with their targets, thus leading to a high signal-to-noise ratio in wash-free bioimaging. We previously reported the first near-infrared fluorogenic dimers derived from cyanine 5.5 dyes for the optical detection of G protein-coupled receptors. Owing to their hydrophobic character, these dimers are prone to form nonspecific interactions with proteins such as albumin and with the lipid bilayer of the cell membrane resulting in a residual background fluorescence in complex biological media. Herein, we report the rational design of new fluorogenic dimers derived from cyanine 5. By modulating the chemical structure of the cyanine units, we discovered that the two asymmetric cyanine 5.25 dyes were able to form intramolecular H-aggregates and self-quenched in aqueous media. Moreover, the resulting original dimeric probes enabled a significant reduction of the nonspecific interactions with bovine serum albumin and lipid bilayers compared with the first generation of cyanine 5.5 dimers. Finally, the optimized asymmetric fluorogenic dimer was grafted to carbetocin for the specific imaging of the oxytocin receptor under no-wash conditions directly in cell culture media, notably improving the signal-to-background ratio compared with the previous generation of cyanine 5.5 dimers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少与白蛋白和脂质双分子层的非特异性相互作用的氰基荧光二聚体的合理设计:应用于活细胞中 GPCR 的高灵敏度成像。
具有极性敏感折叠的致荧光二聚体是用于活细胞生物成像的强大探针。它们只有在与目标相互作用后才会开启荧光,因此在免洗生物成像中具有很高的信噪比。我们曾报道过第一种由 5.5 号氰基染料衍生的近红外致荧光二聚体,用于光学检测 G 蛋白偶联受体。由于其疏水特性,这些二聚体容易与蛋白质(如白蛋白)和细胞膜脂质双分子层形成非特异性相互作用,导致在复杂的生物介质中产生残余背景荧光。在此,我们报告了从氰基 5 衍生出的新型致荧光二聚体的合理设计。通过调节氰基单元的化学结构,我们发现两种不对称的氰基 5.25 染料能够形成分子内 H-聚集体,并在水介质中自淬灭。此外,与第一代氰基 5.5 二聚体相比,由此产生的原始二聚体探针能够显著减少与牛血清白蛋白和脂质双分子层的非特异性相互作用。最后,将优化的不对称致荧光二聚体接枝到卡贝缩宫素上,在免洗条件下直接在细胞培养基中对催产素受体进行特异性成像,与上一代 5.5 氰二聚体相比,明显提高了信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Synthesis and Structure Optimization of Star Copolymers as Tunable Macromolecular Carriers for Minimal Immunogen Vaccine Delivery. Early Detection and Noninvasive Staging of Kidney Dysfunction by a PEGylated Conventional Fluorophore via GFR-Sensitive Renal Transport. Control of Solid-Supported Intra- vs Interstrand Stille Coupling Reactions for Synthesis of DNA-Oligophenylene Conjugates. Chemical Synthesis of Interleukin-6 for Mirror-Image Screening. First-in-Human Evaluation of [18F]FDOPA Produced by Organo-Photoredox Reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1