Colloidal Synthesis of Cu3N Nanorods and Construction of Cu3N-Cu2O Heteronanostructures via Epitaxial Growth.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-07-24 Epub Date: 2024-07-10 DOI:10.1021/acs.nanolett.4c01624
Dong Zheng, Yu-Qing He, He Ou-Yang, Jian-Ding Zhang, Gang Zhang, Shi-Kui Han
{"title":"Colloidal Synthesis of Cu<sub>3</sub>N Nanorods and Construction of Cu<sub>3</sub>N-Cu<sub>2</sub>O Heteronanostructures via Epitaxial Growth.","authors":"Dong Zheng, Yu-Qing He, He Ou-Yang, Jian-Ding Zhang, Gang Zhang, Shi-Kui Han","doi":"10.1021/acs.nanolett.4c01624","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu<sub>3</sub>N nanorods (NRs). It is found that the trace oxygen (O<sub>2</sub>) plays an important role in the synthesis process. And a new mechanism for the formation of Cu<sub>3</sub>N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu<sub>3</sub>N-Cu<sub>2</sub>O heteronanostructures (HNs) can be prepared. The Cu<sub>3</sub>N NRs and Cu<sub>3</sub>N-Cu<sub>2</sub>O HNs were evaluated as precursor electrocatalysts for the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). The Cu<sub>3</sub>N-Cu<sub>2</sub>O HNs demonstrate remarkable selectivity and stability with ethylene (C<sub>2</sub>H<sub>4</sub>) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu<sub>3</sub>N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01624","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过外延生长胶体合成 Cu3N 纳米棒并构建 Cu3N-Cu2O 异质结构。
过渡金属氮化物纳米晶体(TMNs NCs)的合成是一项重大挑战,原因是氮源在较低温度下的反应活性有限,而且可用的合成方法很少。在本研究中,我们提出了一种用于制造 Cu3N 纳米棒(NRs)的新型胶体合成策略。研究发现,微量氧(O2)在合成过程中起着重要作用。并提出了 Cu3N 形成的新机制。随后,通过二次侧向外延生长,可以制备出 Cu3N-Cu2O 异质结构(HNs)。Cu3N NRs 和 Cu3N-Cu2O HNs 被评估为二氧化碳还原反应(CO2RR)的前体电催化剂。Cu3N-Cu2O HNs 具有显著的选择性和稳定性,乙烯 (C2H4) 法拉第效率 (FE) 高达 55.3%,超过了 Cu3N NRs。这项研究为胶体合成 TMNs NCs 的反应机理提供了创新性见解,并为设计具有成本效益的电催化剂以实现碳中和提供了替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Probing Correlation of Optical Emission and Defect Sites in Hexagonal Boron Nitride by High-Resolution STEM-EELS. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH4 and C2+ Product Selectivity in CO2 Electroreduction. Full-Dimensional Geometric-Phase Spatial Light Metamodulation. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO2 Electro-conversion to Multicarbon Products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1