Solidify Eutectic Electrolytes via the Added MXene as Nucleation Sites for a Solid-State Zinc-Ion Battery with Reconstructed Ion Transport.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-07-24 Epub Date: 2024-07-10 DOI:10.1021/acs.nanolett.4c01085
Xiangxuan Meng, Mingdong Du, Yuning Li, Shiji Du, Lixin Zhao, Shunri Zheng, Jian Zhang, Haibo Li, Liang Qiao, Kar Ban Tan, Wenjuan Han, Shichong Xu, Jiaming Li, Ming Lu
{"title":"Solidify Eutectic Electrolytes via the Added MXene as Nucleation Sites for a Solid-State Zinc-Ion Battery with Reconstructed Ion Transport.","authors":"Xiangxuan Meng, Mingdong Du, Yuning Li, Shiji Du, Lixin Zhao, Shunri Zheng, Jian Zhang, Haibo Li, Liang Qiao, Kar Ban Tan, Wenjuan Han, Shichong Xu, Jiaming Li, Ming Lu","doi":"10.1021/acs.nanolett.4c01085","DOIUrl":null,"url":null,"abstract":"<p><p>Stationary energy storage infrastructure based on zinc-ion transport and storage chemistry is attracting more attention due to favorable metrics, including cost, safety, and recycling feasibility. However, splitting water and liquid electrolyte fluidity lead to cathode dissolution and Zn corrosion, resulting in rapid attenuation of the capacity and service life. Herein, a new architecture of solid-state electrolytes with high zinc ionic conductivity at room temperature was prepared via solidification of deep eutectic solvents utilizing MXene as nucleation additives. The ionic conductivity of MXene/ZCEs reached 6.69 × 10<sup>-4</sup> S cm<sup>-1</sup> at room temperature. Dendrite-free Zn plating/stripping with high reversibility can remain for over 2500 h. Subsequently, the fabricated solid-state zinc-ion battery with eliminated HER and suppressed Zn dendrites exhibited excellent cycling performance and could work normally in a range from -10 to 60 °C. This design inspired by eutectic solidification affords new insights into the multivalent solid electrochemistry suffering from slow ion migration.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01085","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stationary energy storage infrastructure based on zinc-ion transport and storage chemistry is attracting more attention due to favorable metrics, including cost, safety, and recycling feasibility. However, splitting water and liquid electrolyte fluidity lead to cathode dissolution and Zn corrosion, resulting in rapid attenuation of the capacity and service life. Herein, a new architecture of solid-state electrolytes with high zinc ionic conductivity at room temperature was prepared via solidification of deep eutectic solvents utilizing MXene as nucleation additives. The ionic conductivity of MXene/ZCEs reached 6.69 × 10-4 S cm-1 at room temperature. Dendrite-free Zn plating/stripping with high reversibility can remain for over 2500 h. Subsequently, the fabricated solid-state zinc-ion battery with eliminated HER and suppressed Zn dendrites exhibited excellent cycling performance and could work normally in a range from -10 to 60 °C. This design inspired by eutectic solidification affords new insights into the multivalent solid electrochemistry suffering from slow ion migration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过添加 MXene 作为离子传输重构固态锌-离子电池的成核点,固化共晶电解质。
基于锌离子传输和存储化学的固定储能基础设施因其成本、安全性和回收可行性等有利指标而受到越来越多的关注。然而,分裂水和液态电解质的流动性会导致阴极溶解和锌腐蚀,从而导致容量和使用寿命的快速衰减。在此,我们利用 MXene 作为成核添加剂,通过深共晶溶剂固化制备了一种在室温下具有高锌离子电导率的新型固态电解质结构。MXene/ZCE 在室温下的离子电导率达到 6.69 × 10-4 S cm-1。无枝晶的锌镀层/剥离具有高可逆性,可保持 2500 小时以上。随后,制造出的固态锌离子电池消除了氢化还原反应,抑制了锌枝晶,具有优异的循环性能,可在 -10 至 60 °C 范围内正常工作。这种受共晶凝固启发的设计为研究离子迁移缓慢的多价固体电化学提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Probing Correlation of Optical Emission and Defect Sites in Hexagonal Boron Nitride by High-Resolution STEM-EELS. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH4 and C2+ Product Selectivity in CO2 Electroreduction. Full-Dimensional Geometric-Phase Spatial Light Metamodulation. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO2 Electro-conversion to Multicarbon Products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1