Fangchinoline protects hepatic ischemia/reperfusion liver injury in rats through anti-oxidative stress and anti-inflammation properties: an in silico study.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2024-07-10 DOI:10.1002/bab.2628
Shuangxi Li, AnDong Xiang, Feng Guo, Abdullah A Alarfaj, Zehai Gao
{"title":"Fangchinoline protects hepatic ischemia/reperfusion liver injury in rats through anti-oxidative stress and anti-inflammation properties: an in silico study.","authors":"Shuangxi Li, AnDong Xiang, Feng Guo, Abdullah A Alarfaj, Zehai Gao","doi":"10.1002/bab.2628","DOIUrl":null,"url":null,"abstract":"<p><p>Liver ischemia-reperfusion (I/R) injury is a common cause of organ failure, developed by a sudden block in the blood and oxygen supply and subsequent restoration. I/R damage is responsible for acute and chronic rejection after organ transplantation, accounting for 10% of early graft failure. The study investigated the therapeutic properties of fangchinoline in liver injury-induced rats. The rats were divided into three groups: Sham, I/R without pretreatment, and I/R + 10 mg/kg fangchinoline pretreatment. Blood and liver samples were collected for assays, and an in silico docking analysis was conducted to determine fangchinoline's inhibitory effect. The pretreatment with 10 mg/kg of fangchinoline effectively reduced hepatic marker enzymes such as AST, LDH, and ALT in the serum of rats with liver I/R damage. Fangchinoline treatment significantly reduced interleukin-8 (IL-8), IL-6, and tumor necrosis factor-α (TNF-α) in I/R-induced rats, boosting antioxidants and decreasing MDA. Histopathological studies showed liver injury protection, and fangchinoline inhibited TNF-α and IL-6 with improved binding affinity. Fangchinoline has hepatoprotective properties by reducing inflammation in rats with liver I/R damage, as demonstrated in the current study. Hence, it can be an effective salutary agent in preventing liver damage caused by I/R.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2628","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver ischemia-reperfusion (I/R) injury is a common cause of organ failure, developed by a sudden block in the blood and oxygen supply and subsequent restoration. I/R damage is responsible for acute and chronic rejection after organ transplantation, accounting for 10% of early graft failure. The study investigated the therapeutic properties of fangchinoline in liver injury-induced rats. The rats were divided into three groups: Sham, I/R without pretreatment, and I/R + 10 mg/kg fangchinoline pretreatment. Blood and liver samples were collected for assays, and an in silico docking analysis was conducted to determine fangchinoline's inhibitory effect. The pretreatment with 10 mg/kg of fangchinoline effectively reduced hepatic marker enzymes such as AST, LDH, and ALT in the serum of rats with liver I/R damage. Fangchinoline treatment significantly reduced interleukin-8 (IL-8), IL-6, and tumor necrosis factor-α (TNF-α) in I/R-induced rats, boosting antioxidants and decreasing MDA. Histopathological studies showed liver injury protection, and fangchinoline inhibited TNF-α and IL-6 with improved binding affinity. Fangchinoline has hepatoprotective properties by reducing inflammation in rats with liver I/R damage, as demonstrated in the current study. Hence, it can be an effective salutary agent in preventing liver damage caused by I/R.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方棘霉素通过抗氧化应激和抗炎特性保护大鼠肝缺血/再灌注肝损伤:一项硅学研究。
肝脏缺血再灌注(I/R)损伤是器官衰竭的常见原因,它是由血液和氧气供应突然中断以及随后的恢复造成的。I/R损伤是器官移植后急性和慢性排斥反应的原因,占早期移植失败的10%。本研究探讨了吩喹啉对肝损伤大鼠的治疗作用。大鼠分为三组:Sham 组、未经预处理的 I/R 组和 I/R + 10 mg/kg fangchinoline 预处理组。采集血液和肝脏样本进行化验,并进行硅学对接分析以确定芒果胆碱的抑制作用。用 10 毫克/千克的方棘霉素预处理可有效降低肝脏 I/R 损伤大鼠血清中的 AST、LDH 和 ALT 等肝脏标志酶。方棘霉素能明显降低 I/R 大鼠体内的白细胞介素-8(IL-8)、IL-6 和肿瘤坏死因子-α(TNF-α),提高抗氧化能力,降低 MDA。组织病理学研究显示,方棘霉素对肝损伤有保护作用,并能抑制 TNF-α 和 IL-6,且结合亲和力更强。本研究表明,方棘霉素具有保肝作用,能减轻肝脏 I/R 损伤大鼠的炎症反应。因此,方棘霉素可以有效地预防 I/R 引起的肝损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Concanavalin A-activated magnetic nanoparticles as an affine material for urinary exosome isolation. The Annexin A1 Protein Mimetic Peptide Ac2-26 prevents cellular senescence of CHON-001 chondrocytes against tumor necrosis factor-α via the Nrf2/NF-κB pathway. Spatio-temporal localization of P21-activated kinase in endometrial cancer. Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B. Organ toxicities associated with diet-induced obesity in rats: Investigation of changes in activities selected enzymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1