Growth on Douglas fir media facilitates Cryptococcus virulence factor production and enhances fungal survival against environmental and immune stressors.

IF 2.7 3区 医学 Q3 INFECTIOUS DISEASES Medical mycology Pub Date : 2024-07-04 DOI:10.1093/mmy/myae068
Piotr R Stempinski, Seth D Greengo, Arturo Casadevall
{"title":"Growth on Douglas fir media facilitates Cryptococcus virulence factor production and enhances fungal survival against environmental and immune stressors.","authors":"Piotr R Stempinski, Seth D Greengo, Arturo Casadevall","doi":"10.1093/mmy/myae068","DOIUrl":null,"url":null,"abstract":"<p><p>The yeasts Cryptococcus neoformans and Cryptococcus gattii are fungal pathogens that can be isolated from the environment, including the surfaces of many plants. Cryptococcus gattii caused an outbreak on Vancouver Island, British Columbia beginning in 1999 that has since spread to the Pacific Northwest of the United States. Coastal Douglas fir (Pseudotsuga menziesii) is an important lumber species and a major component of the ecosystems in this area. Previous research has explored Cryptococcus survival and mating on Douglas fir plants and plant-derived material, but no studies have been done on the production of cryptococcal virulence factors by cells grown on those media. Here, we investigated the effects of growth on Douglas fir-derived media on the production of the polysaccharide capsule and melanin, two of the most important cryptococcal virulence factors. We found that while the capsule was mostly unchanged by growth in Douglas fir media compared to cells grown in defined minimal media, Cryptococcus spp. can use substrates present in Douglas fir to synthesize functional and protective melanin. These results suggest mechanisms by which Cryptococcus species may survive in the environment and emphasize the need to explore how association with Douglas fir trees could affect its epidemiology for human cryptococcosis.</p>","PeriodicalId":18586,"journal":{"name":"Medical mycology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical mycology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mmy/myae068","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

The yeasts Cryptococcus neoformans and Cryptococcus gattii are fungal pathogens that can be isolated from the environment, including the surfaces of many plants. Cryptococcus gattii caused an outbreak on Vancouver Island, British Columbia beginning in 1999 that has since spread to the Pacific Northwest of the United States. Coastal Douglas fir (Pseudotsuga menziesii) is an important lumber species and a major component of the ecosystems in this area. Previous research has explored Cryptococcus survival and mating on Douglas fir plants and plant-derived material, but no studies have been done on the production of cryptococcal virulence factors by cells grown on those media. Here, we investigated the effects of growth on Douglas fir-derived media on the production of the polysaccharide capsule and melanin, two of the most important cryptococcal virulence factors. We found that while the capsule was mostly unchanged by growth in Douglas fir media compared to cells grown in defined minimal media, Cryptococcus spp. can use substrates present in Douglas fir to synthesize functional and protective melanin. These results suggest mechanisms by which Cryptococcus species may survive in the environment and emphasize the need to explore how association with Douglas fir trees could affect its epidemiology for human cryptococcosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在杜松培养基上生长有利于隐球菌毒力因子的产生,并提高真菌在环境和免疫压力下的存活率。
新生隐球菌和加特隐球菌是真菌病原体,可从环境(包括许多植物的表面)中分离出来。1999 年,加特隐球菌在不列颠哥伦比亚省温哥华岛爆发,随后蔓延到美国西北太平洋地区。沿海花旗松(Pseudotsuga menziesii)是一种重要的木材品种,也是该地区生态系统的主要组成部分。以前的研究探讨了隐球菌在花旗松植物和植物衍生材料上的生存和交配情况,但尚未研究在这些培养基上生长的细胞产生隐球菌毒力因子的情况。在这里,我们研究了在花旗松衍生培养基上生长对多糖囊和黑色素(两种最重要的隐球菌毒力因子)产生的影响。我们发现,与在限定的最小培养基中生长的细胞相比,在花旗松培养基中生长的多糖胶囊基本没有变化,但隐球菌属可以利用花旗松中的底物合成功能性和保护性黑色素。这些结果表明了隐球菌可能在环境中生存的机制,并强调有必要探讨与花旗松树的关联会如何影响人类隐球菌病的流行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical mycology
Medical mycology 医学-兽医学
CiteScore
5.70
自引率
3.40%
发文量
632
审稿时长
12 months
期刊介绍: Medical Mycology is a peer-reviewed international journal that focuses on original and innovative basic and applied studies, as well as learned reviews on all aspects of medical, veterinary and environmental mycology as related to disease. The objective is to present the highest quality scientific reports from throughout the world on divergent topics. These topics include the phylogeny of fungal pathogens, epidemiology and public health mycology themes, new approaches in the diagnosis and treatment of mycoses including clinical trials and guidelines, pharmacology and antifungal susceptibilities, changes in taxonomy, description of new or unusual fungi associated with human or animal disease, immunology of fungal infections, vaccinology for prevention of fungal infections, pathogenesis and virulence, and the molecular biology of pathogenic fungi in vitro and in vivo, including genomics, transcriptomics, metabolomics, and proteomics. Case reports are no longer accepted. In addition, studies of natural products showing inhibitory activity against pathogenic fungi are not accepted without chemical characterization and identification of the compounds responsible for the inhibitory activity.
期刊最新文献
Pulmonary aspergillosis in green sea turtles (Chelonia mydas): a case series aspergillosis in green sea turtles. Clinical utility of pharmacogenomic testing for patients with coccidioidal meningitis. Antemortem diagnostic tests for the detection of Aspergillus infection in birds: a systematic review. Geraniol inhibits both planktonic cells and biofilms of the Candida parapsilosis species complex: Highlight for the improved efficacy of amphotericin B, caspofungin and fluconazole plus Geraniol. Malassezia gallinae sp. nov., a new basidiomycetous yeast species isolated from skins of chickens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1