{"title":"Visualization of Blood-Brain Barrier Disruption in Septic Mice with the New Method Based on in Vivo Imaging Technology.","authors":"Haisong Zhang, Yuhang Ai, Xiaolei Zhang, Fuxing Deng, Shiwei Jiang, Shucai Xie, Milin Peng, Wei Chen, Jiyun Hu, Songyun Deng, Lina Zhang","doi":"10.1007/s12028-024-02018-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dynamic monitoring of the blood-brain barrier (BBB) functional status in septic mice can help to explore the pathological mechanisms. Therefore, we proposed a new method for monitoring BBB permeability and applied it to the detection of sepsis models.</p><p><strong>Methods: </strong>The new method involves the construction of an optical cranial window and in vivo imaging. We performed dynamic monitoring of BBB permeability and cerebral blood flow (CBF) in cecal ligation puncture (CLP) and endotoxemia (lipopolysaccharide [LPS]) mice.</p><p><strong>Results: </strong>The sensitivity and accuracy of this method were higher than those of Evans blue evaluation. The increase of BBB permeability in the group of CLP mice was relatively mild and correlated with overall survival, and the damage was irreversible. Contrarily, BBB damage in the LPS group was more acute and severe, unrelated to overall survival, but recoverable. The CBF decreased significantly in both model mouse groups 24 h after modeling, but only the CBF proportion decrease in the LPS group was significantly correlated with an increase in BBB permeability. Within 24 h after both models were established, the decrease in blood flow in the digestive organs occurred earlier than in the brain and kidneys, and the decrease in small intestine blood flow in the LPS group progressed faster.</p><p><strong>Conclusions: </strong>We have successfully demonstrated the feasibility of our novel method to detect BBB permeability in mice. Our results revealed a significant difference in the BBB permeability change trend between the CLP and LPS model mice when survival curves were consistent. Notably, the CLP-model mice demonstrated a closer resemblance to clinical patients. Our findings suggest that early-stage brain tissue hypoperfusion has a greater impact on BBB function damage in endotoxemia mice, which is related to the faster progression of blood flow redistribution.</p>","PeriodicalId":19118,"journal":{"name":"Neurocritical Care","volume":" ","pages":"925-941"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocritical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12028-024-02018-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Dynamic monitoring of the blood-brain barrier (BBB) functional status in septic mice can help to explore the pathological mechanisms. Therefore, we proposed a new method for monitoring BBB permeability and applied it to the detection of sepsis models.
Methods: The new method involves the construction of an optical cranial window and in vivo imaging. We performed dynamic monitoring of BBB permeability and cerebral blood flow (CBF) in cecal ligation puncture (CLP) and endotoxemia (lipopolysaccharide [LPS]) mice.
Results: The sensitivity and accuracy of this method were higher than those of Evans blue evaluation. The increase of BBB permeability in the group of CLP mice was relatively mild and correlated with overall survival, and the damage was irreversible. Contrarily, BBB damage in the LPS group was more acute and severe, unrelated to overall survival, but recoverable. The CBF decreased significantly in both model mouse groups 24 h after modeling, but only the CBF proportion decrease in the LPS group was significantly correlated with an increase in BBB permeability. Within 24 h after both models were established, the decrease in blood flow in the digestive organs occurred earlier than in the brain and kidneys, and the decrease in small intestine blood flow in the LPS group progressed faster.
Conclusions: We have successfully demonstrated the feasibility of our novel method to detect BBB permeability in mice. Our results revealed a significant difference in the BBB permeability change trend between the CLP and LPS model mice when survival curves were consistent. Notably, the CLP-model mice demonstrated a closer resemblance to clinical patients. Our findings suggest that early-stage brain tissue hypoperfusion has a greater impact on BBB function damage in endotoxemia mice, which is related to the faster progression of blood flow redistribution.
期刊介绍:
Neurocritical Care is a peer reviewed scientific publication whose major goal is to disseminate new knowledge on all aspects of acute neurological care. It is directed towards neurosurgeons, neuro-intensivists, neurologists, anesthesiologists, emergency physicians, and critical care nurses treating patients with urgent neurologic disorders. These are conditions that may potentially evolve rapidly and could need immediate medical or surgical intervention. Neurocritical Care provides a comprehensive overview of current developments in intensive care neurology, neurosurgery and neuroanesthesia and includes information about new therapeutic avenues and technological innovations. Neurocritical Care is the official journal of the Neurocritical Care Society.