A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2024-10-03 DOI:10.1093/neuonc/noae120
Brian Golbourn, Ben Ho, Andrew Bondoc, Amanda Luck, Xiaolian Fan, Elizabeth Richardson, Richard Marcellus, Michael Prakesch, Mathew Halbert, Nishant Agrawal, Christian Smith, Annie Huang, James T Rutka
{"title":"A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors.","authors":"Brian Golbourn, Ben Ho, Andrew Bondoc, Amanda Luck, Xiaolian Fan, Elizabeth Richardson, Richard Marcellus, Michael Prakesch, Mathew Halbert, Nishant Agrawal, Christian Smith, Annie Huang, James T Rutka","doi":"10.1093/neuonc/noae120","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated.</p><p><strong>Methods: </strong>We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups.</p><p><strong>Results: </strong>We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells.</p><p><strong>Conclusions: </strong>Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":"1895-1911"},"PeriodicalIF":16.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae120","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated.

Methods: We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups.

Results: We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells.

Conclusions: Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一项激酶组药物筛选确定了多TKI协同作用和ERBB2信号转导是MYC/TYR亚组ATRT的治疗弱点。
背景:非典型畸形横纹肌瘤(ATRT)是一种罕见的、毁灭性的、基本上无法治愈的小儿脑肿瘤。尽管最近的研究发现了具有不同疾病模式和信号特征的三个ATRT分子亚群,但ATRT亚群的治疗特征仍未完全阐明:我们研究了465种激酶抑制剂对ATRT亚群特异性细胞系的影响。然后,我们应用多组学分析方法研究了激酶抑制剂在 ATRT 亚群中疗效的潜在分子机制:我们观察到,ATRT细胞系对PI3K和MAPK信号通路抑制剂以及CDK、AURKA/B激酶和PLK1广泛敏感。我们在MYC/TYR ATRT细胞中发现了两类主要针对受体酪氨酸激酶(RTK)的多激酶抑制剂(MKIs),包括表皮生长因子受体(PDGFR)和表皮生长因子受体/ERBB2。当 PDGFRB 抑制剂达沙替尼与包括雷帕霉素和曲美替尼在内的广效 PI3K 和 MAPK 通路抑制剂联合使用时,可协同影响 MYC/TYR ATRT 细胞的生长。我们观察到,MYC/TYR ATRT 细胞对各种 ERBB2 信号抑制剂也非常敏感。对原代MYC/TYR ATRT进行的转录、H3K27Ac ChIPSeq、ATACSeq和HiChIP分析显示,ERBB2的表达与不同的甲基化和DNA循环激活不同的增强子元件相关。值得注意的是,我们发现脑穿透性表皮生长因子受体/ERBB2抑制剂阿法替尼能特异性抑制MYC/TYR ATRT细胞的体外和体内生长:综上所述,我们的研究表明,PDGFR和ERBB2导向TKIs与PI3K和MAPK通路抑制剂的联合治疗是治疗MYC/TYR亚组ATRT的重要新疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
Distinct epigenetic and transcriptional profiles of Epstein-Barr virus (EBV) positive and negative primary CNS lymphomas. Inhibition of Mitochondrial Bioenergetics and Hypoxia to Radiosensitize Diffuse Intrinsic Pontine Glioma. EANO guideline on molecular testing of meningiomas for targeted therapy selection. G-quadruplex stabilizer CX-5461 effectively combines with radiotherapy to target ATRX-deficient malignant glioma. Longitudinal multimodal profiling of IDH-wildtype glioblastoma reveals the molecular evolution and cellular phenotypes underlying prognostically different treatment responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1