{"title":"Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic Review.","authors":"Elham Raeisi, Saeid Heidari-Soureshjani, Catherine Mt Sherwin, Zeinab Bagheri","doi":"10.2174/0115748928315442240624120104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Natural compounds such as Berberine (Ber) have been considered due to favorable anticancer properties, low side effects, and availability along with chemotherapy treatments.</p><p><strong>Objectives: </strong>This study aimed to investigate the radiosensitizing and radioprotective properties of Ber.</p><p><strong>Methods: </strong>In this systematic review that was performed according to PRISMA 2020 guidelines, we searched the publications before 25 Sep 2023 in Web of Science, PubMed, Scopus, Embase, and Cochrane Library databases. After determining inclusion and exclusion criteria, data were extracted and imported into an Excel form, and the results of the studies were reviewed.</p><p><strong>Results: </strong>Ber by reducing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-β1), and increasing interleukin 10 (IL-10) levels, showed its antioxidant and anti-inflammatory properties against ionizing radiation. Reducing cell cytotoxicity and apoptosis were other radioprotective properties of Ber. Conversely, in cancer cells, Ber, via inducing oxidative stress and accumulation ROS in tumor tissues, inducing DNA damage, mitochondrial dysfunction and hyperpolarization, inducing apoptosis, and cell cycle arrest, inhibits the up-regulation of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) revealed radiosensitizing properties.</p><p><strong>Conclusion: </strong>Ber, via various mechanisms, showed favorable radioprotective and radiosensitizing properties in clinical and experimental studies. However, more clinical studies are needed in this field.</p>","PeriodicalId":94186,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115748928315442240624120104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Natural compounds such as Berberine (Ber) have been considered due to favorable anticancer properties, low side effects, and availability along with chemotherapy treatments.
Objectives: This study aimed to investigate the radiosensitizing and radioprotective properties of Ber.
Methods: In this systematic review that was performed according to PRISMA 2020 guidelines, we searched the publications before 25 Sep 2023 in Web of Science, PubMed, Scopus, Embase, and Cochrane Library databases. After determining inclusion and exclusion criteria, data were extracted and imported into an Excel form, and the results of the studies were reviewed.
Results: Ber by reducing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-β1), and increasing interleukin 10 (IL-10) levels, showed its antioxidant and anti-inflammatory properties against ionizing radiation. Reducing cell cytotoxicity and apoptosis were other radioprotective properties of Ber. Conversely, in cancer cells, Ber, via inducing oxidative stress and accumulation ROS in tumor tissues, inducing DNA damage, mitochondrial dysfunction and hyperpolarization, inducing apoptosis, and cell cycle arrest, inhibits the up-regulation of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) revealed radiosensitizing properties.
Conclusion: Ber, via various mechanisms, showed favorable radioprotective and radiosensitizing properties in clinical and experimental studies. However, more clinical studies are needed in this field.