6-Phosphogluconolactonase is critical for the efficient functioning of the pentose phosphate pathway

Léa Phégnon, Julien Pérochon, Sandrine Uttenweiler-Joseph, Edern Cahoreau, Pierre Millard, Fabien Létisse
{"title":"6-Phosphogluconolactonase is critical for the efficient functioning of the pentose phosphate pathway","authors":"Léa Phégnon,&nbsp;Julien Pérochon,&nbsp;Sandrine Uttenweiler-Joseph,&nbsp;Edern Cahoreau,&nbsp;Pierre Millard,&nbsp;Fabien Létisse","doi":"10.1111/febs.17221","DOIUrl":null,"url":null,"abstract":"<p>The metabolic networks of microorganisms are remarkably robust to genetic and environmental perturbations. This robustness stems from redundancies such as gene duplications, isoenzymes, alternative metabolic pathways, and also from non-enzymatic reactions. In the oxidative branch of the pentose phosphate pathway (oxPPP), 6-phosphogluconolactone hydrolysis into 6-phosphogluconate is catalysed by 6-phosphogluconolactonase (Pgl) but in the absence of the latter, the oxPPP flux is thought to be maintained by spontaneous hydrolysis. However, in Δ<i>pgl Escherichia coli</i>, an extracellular pathway can also contribute to pentose phosphate synthesis. This raises question as to whether the intracellular non-enzymatic reaction can compensate for the absence of 6-phosphogluconolactonase and, ultimately, on the role of 6-phosphogluconolactonase in central metabolism. Our results validate that the bypass pathway is active in the absence of Pgl, specifically involving the extracellular spontaneous hydrolysis of gluconolactones to gluconate. Under these conditions, metabolic flux analysis reveals that this bypass pathway accounts for the entire flux into the oxPPP. This alternative metabolic route—partially extracellular—sustains the flux through the oxPPP necessary for cell growth, albeit at a reduced rate in the absence of Pgl. Importantly, these findings imply that intracellular non-enzymatic hydrolysis of 6-phosphogluconolactone does not compensate for the absence of Pgl. This underscores the crucial role of Pgl in ensuring the efficient functioning of the oxPPP.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17221","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/febs.17221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The metabolic networks of microorganisms are remarkably robust to genetic and environmental perturbations. This robustness stems from redundancies such as gene duplications, isoenzymes, alternative metabolic pathways, and also from non-enzymatic reactions. In the oxidative branch of the pentose phosphate pathway (oxPPP), 6-phosphogluconolactone hydrolysis into 6-phosphogluconate is catalysed by 6-phosphogluconolactonase (Pgl) but in the absence of the latter, the oxPPP flux is thought to be maintained by spontaneous hydrolysis. However, in Δpgl Escherichia coli, an extracellular pathway can also contribute to pentose phosphate synthesis. This raises question as to whether the intracellular non-enzymatic reaction can compensate for the absence of 6-phosphogluconolactonase and, ultimately, on the role of 6-phosphogluconolactonase in central metabolism. Our results validate that the bypass pathway is active in the absence of Pgl, specifically involving the extracellular spontaneous hydrolysis of gluconolactones to gluconate. Under these conditions, metabolic flux analysis reveals that this bypass pathway accounts for the entire flux into the oxPPP. This alternative metabolic route—partially extracellular—sustains the flux through the oxPPP necessary for cell growth, albeit at a reduced rate in the absence of Pgl. Importantly, these findings imply that intracellular non-enzymatic hydrolysis of 6-phosphogluconolactone does not compensate for the absence of Pgl. This underscores the crucial role of Pgl in ensuring the efficient functioning of the oxPPP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6- 磷酸葡萄糖酸内酯酶对磷酸戊糖途径的高效运作至关重要。
微生物的代谢网络对遗传和环境扰动具有显著的稳健性。这种稳健性源于冗余,如基因复制、同工酶、替代代谢途径以及非酶类反应。在磷酸戊糖途径(oxPPP)的氧化分支中,6-磷酸葡萄糖酸内酯水解为 6-磷酸葡萄糖酸是由 6-磷酸葡萄糖酸内酯酶(Pgl)催化的,但如果没有后者,oxPPP 通量被认为是通过自发水解来维持的。然而,在 Δpgl 大肠杆菌中,细胞外途径也有助于磷酸戊糖的合成。这就提出了一个问题:细胞内的非酶促反应能否弥补 6-磷酸葡萄糖酸内酯酶的缺失,以及最终 6-磷酸葡萄糖酸内酯酶在中心代谢中的作用。我们的结果验证了旁路途径在缺乏 Pgl 的情况下是活跃的,特别是涉及细胞外葡萄糖酸内酯自发水解为葡萄糖酸的过程。在这些条件下,代谢通量分析表明,该旁路途径是进入 oxPPP 的全部通量。尽管在缺乏 Pgl 的情况下,通过 oxPPP 的通量会降低,但这一替代代谢途径(部分在细胞外)仍是细胞生长所必需的通量。重要的是,这些发现意味着细胞内 6-磷酸葡萄糖酸内酯的非酶水解不能弥补 Pgl 的缺失。这强调了 Pgl 在确保 oxPPP 有效运作方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Atg2 controls Drosophila hematopoiesis through the PVR/TOR signaling pathways. Obesity, white adipose tissue and cancer. Issue Information CREB3L1/OASIS: cell cycle regulator and tumor suppressor. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1