Xiaowei Yang, Yanyan Lu, Qian Zhao, Biao Lei, Kang Chen, Yi Wei, Hongwen Zhang, Weiping Cai
{"title":"Bowl Shaped Oxide-Templated Gold Nanostructured Arrays and Structure-Induced Hydrophilic–Hydrophobic Transition and Molecular Trapping Effect (Adv. Mater. Technol. 13/2024)","authors":"Xiaowei Yang, Yanyan Lu, Qian Zhao, Biao Lei, Kang Chen, Yi Wei, Hongwen Zhang, Weiping Cai","doi":"10.1002/admt.202470059","DOIUrl":null,"url":null,"abstract":"<p><b>Gold Nanostructured Arrays</b></p><p>In article number 2400019, Qian Zhao, Weiping Cai, and co-workers fabricate a variety of gold nanostructured arrays based on a bowl-shaped tin oxide secondary template with fine structure on its bowl edges, including ‘graphene-structured’ nanoarrays, non-contact nanoparticle ring arrays, closely-contacted nanoring arrays and bowl/nanoparticle binary composite nanoarrays, achieving structural diversity and morphologicalmodifiability. These nanoarrays exhibit structure-induced hydrophilic-hydrophobic transition and a target molecular trapping effect.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202470059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202470059","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gold Nanostructured Arrays
In article number 2400019, Qian Zhao, Weiping Cai, and co-workers fabricate a variety of gold nanostructured arrays based on a bowl-shaped tin oxide secondary template with fine structure on its bowl edges, including ‘graphene-structured’ nanoarrays, non-contact nanoparticle ring arrays, closely-contacted nanoring arrays and bowl/nanoparticle binary composite nanoarrays, achieving structural diversity and morphologicalmodifiability. These nanoarrays exhibit structure-induced hydrophilic-hydrophobic transition and a target molecular trapping effect.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.