Quantum engineering of radiative properties of a nanoscale mesoscopic system

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-07-10 DOI:10.1039/d4nr01233j
Ilya V. Doronin, Alexander Zyablovsky, Evgeny S. Andrianov, Alexey S. Kalmykov, Anton S. Gritchenko, Boris N. Khlebtsov, Shao-Peng Wang, Bin Kang, Victor I. Balykin, P. Melentiev
{"title":"Quantum engineering of radiative properties of a nanoscale mesoscopic system","authors":"Ilya V. Doronin, Alexander Zyablovsky, Evgeny S. Andrianov, Alexey S. Kalmykov, Anton S. Gritchenko, Boris N. Khlebtsov, Shao-Peng Wang, Bin Kang, Victor I. Balykin, P. Melentiev","doi":"10.1039/d4nr01233j","DOIUrl":null,"url":null,"abstract":"Despite recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: large spectral width, low intensity, blinking, photodegradation, biocompat-ibility et cet. In this work, we present the theoretical and experimental investigation of quantum light sources – mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr01233j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: large spectral width, low intensity, blinking, photodegradation, biocompat-ibility et cet. In this work, we present the theoretical and experimental investigation of quantum light sources – mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米级介观系统辐射特性的量子工程
尽管量子技术取得了最新进展,但控制众多应用中的量子发射器的发光特性问题依然存在:光谱宽度大、强度低、闪烁、光降解、生物相容性等。在这项工作中,我们介绍了量子光源的理论和实验研究--量子光源是由薄聚多巴胺层中的荧光分子与金属或介电纳米粒子耦合而成的介观系统。聚多巴胺具有许多诱人的粘附性和光学特性,有望用作染料分子的宿主介质。然而,将荧光分子掺入聚多巴胺的多次尝试都以失败告终,因为聚多巴胺已被证明是一种通过佛斯特共振能量转移和/或光诱导电子转移而产生的高效荧光淬灭剂。以该系统为例,我们通过分子与金属纳米粒子的强物质波耦合,精心塑造其能级,从而展示了分子与电磁场之间相互作用的新见解。我们发现,强耦合能有效抑制多巴胺中荧光分子的淬灭,为成像提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
A supervised graph-based deep learning algorithm to detect and quantify clustered particles. Preparation of sp2 carbon-bonded π-conjugated COF aerogels by ultrasound-assisted mild solvothermal reaction for multi-functional applications. Restoring physiological parameters of the pancreas and kidney through treatment with a polymeric nano-formulation of C-peptide and lisofylline combination in diabetic nephropathy. Surface-anchored Carbon Nanomaterials for antimicrobial surfaces Design of terahertz metamaterial absorbers with switchable absorption functions utilizing thermal and electrical dual-modulation strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1