Discovery potential of the Glashow resonance in an air shower neutrino telescope* * Project Supported by the ``CUG Scholar'' Scientific Research Funds at China University of Geosciences (Wuhan) (2024014)
{"title":"Discovery potential of the Glashow resonance in an air shower neutrino telescope* * Project Supported by the ``CUG Scholar'' Scientific Research Funds at China University of Geosciences (Wuhan) (2024014)","authors":"Guo-Yuan Huang","doi":"10.1088/1674-1137/ad4c5c","DOIUrl":null,"url":null,"abstract":"The in-ice or in-water Cherenkov neutrino telescope, such as IceCube, has already proved its power in measuring the Glashow resonance by searching for the bump around <inline-formula>\n<tex-math><?CDATA $ E^{}_{\\rm \\nu} = 6.3\\; {\\rm PeV} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_8_085107_M1.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> arising from the <italic toggle=\"yes\">W</italic>-boson production. There are many proposals for the next few decades for observations of cosmic tau neutrinos with extensive air showers, also known as tau neutrino telescopes. The air shower telescope is, in principle, sensitive to the Glashow resonance via the channel <inline-formula>\n<tex-math><?CDATA $ W \\to \\tau \\nu^{}_{\\tau} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_8_085107_M2.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> followed by the tau decay in the air (e.g., TAMBO, which has a geometric area of approximately <inline-formula>\n<tex-math><?CDATA $ 500\\; {\\rm km^2} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_8_085107_M3.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>). Using a thorough numerical analysis, we find that the discovery significance can be up to 90% with a TAMBO-like setup if PeV neutrinos primarily originate from neutron decays, considering the flux parameters measured by IceCube as the input. The presence of new physics affecting the neutrino flavor composition can also increase the significance. However, if ultrahigh-energy neutrinos are dominantly produced from meson decays, it will be statistically difficult for an advanced proposal such as TAMBO to discriminate the Glashow resonance induced by <inline-formula>\n<tex-math><?CDATA $ \\overline{\\nu}^{}_{e} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_8_085107_M5.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> from the intrinsic <inline-formula>\n<tex-math><?CDATA $ \\nu^{}_{\\tau}/\\overline{\\nu}^{}_{\\tau} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_8_085107_M6.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> background. We have identified several limitations for such advanced telescopes, in comparison with the in-ice or in-water telescope, when measuring resonances: (i) a suppressed branching ratio of 11% for the decay <inline-formula>\n<tex-math><?CDATA $ W \\to \\tau \\nu^{}_{\\tau} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_8_085107_M8.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>; (ii) the smearing effect and reduced acceptance because the daughter neutrino takes away <inline-formula>\n<tex-math><?CDATA $ \\langle y \\rangle \\sim \\ $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_8_085107_M9.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>75% of the energy from the <italic toggle=\"yes\">W</italic> decay; and (iii) a large attenuation effect for Earth-skimming neutrinos with the resonance.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"25 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad4c5c","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The in-ice or in-water Cherenkov neutrino telescope, such as IceCube, has already proved its power in measuring the Glashow resonance by searching for the bump around arising from the W-boson production. There are many proposals for the next few decades for observations of cosmic tau neutrinos with extensive air showers, also known as tau neutrino telescopes. The air shower telescope is, in principle, sensitive to the Glashow resonance via the channel followed by the tau decay in the air (e.g., TAMBO, which has a geometric area of approximately ). Using a thorough numerical analysis, we find that the discovery significance can be up to 90% with a TAMBO-like setup if PeV neutrinos primarily originate from neutron decays, considering the flux parameters measured by IceCube as the input. The presence of new physics affecting the neutrino flavor composition can also increase the significance. However, if ultrahigh-energy neutrinos are dominantly produced from meson decays, it will be statistically difficult for an advanced proposal such as TAMBO to discriminate the Glashow resonance induced by from the intrinsic background. We have identified several limitations for such advanced telescopes, in comparison with the in-ice or in-water telescope, when measuring resonances: (i) a suppressed branching ratio of 11% for the decay ; (ii) the smearing effect and reduced acceptance because the daughter neutrino takes away 75% of the energy from the W decay; and (iii) a large attenuation effect for Earth-skimming neutrinos with the resonance.
期刊介绍:
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of:
Particle physics;
Nuclear physics;
Particle and nuclear astrophysics;
Cosmology;
Accelerator physics.
The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication.
The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal.
The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.