Autoencoder to Identify Sex-Specific Sub-phenotypes in Alzheimer's Disease Progression Using Longitudinal Electronic Health Records

Weimin Meng, Jie Xu, Yu Huang, Cankun Wang, Qianqian Song, Anjun Ma, Lixin Song, Jiang Bian, Qin Ma, Rui Yin
{"title":"Autoencoder to Identify Sex-Specific Sub-phenotypes in Alzheimer's Disease Progression Using Longitudinal Electronic Health Records","authors":"Weimin Meng, Jie Xu, Yu Huang, Cankun Wang, Qianqian Song, Anjun Ma, Lixin Song, Jiang Bian, Qin Ma, Rui Yin","doi":"10.1101/2024.07.07.24310055","DOIUrl":null,"url":null,"abstract":"Alzheimer's Disease (AD) is a complex neurodegenerative disorder significantly influenced by sex differences, with approximately two-thirds of AD patients being women. Characterizing the sex-specific AD progression and identifying its progression trajectory is a crucial step to developing effective risk stratification and prevention strategies. In this study, we developed an autoencoder to uncover sex-specific sub-phenotypes in AD progression leveraging longitudinal electronic health record (EHR) data from OneFlorida+ Clinical Research Consortium. Specifically, we first constructed temporal patient representation using longitudinal EHRs from sex-stratified AD cohort. We used a long short-term memory (LSTM)-based autoencoder to extract and generate latent representation embeddings from sequential clinical records of patients. We then applied hierarchical agglomerative clustering to the learned representations, grouping patients based on their progression sub-phenotypes. The experimental results show that we successfully identified five primary sex-based AD sub-phenotypes with corresponding progression pathways with high confidence. These sex-specific sub-phenotypes not only illustrated distinct AD progression patterns but also revealed differences in clinical characteristics and comorbidities between females and males in AD development. These findings could provide valuable insights for advancing personalized AD intervention and treatment strategies.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.07.24310055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's Disease (AD) is a complex neurodegenerative disorder significantly influenced by sex differences, with approximately two-thirds of AD patients being women. Characterizing the sex-specific AD progression and identifying its progression trajectory is a crucial step to developing effective risk stratification and prevention strategies. In this study, we developed an autoencoder to uncover sex-specific sub-phenotypes in AD progression leveraging longitudinal electronic health record (EHR) data from OneFlorida+ Clinical Research Consortium. Specifically, we first constructed temporal patient representation using longitudinal EHRs from sex-stratified AD cohort. We used a long short-term memory (LSTM)-based autoencoder to extract and generate latent representation embeddings from sequential clinical records of patients. We then applied hierarchical agglomerative clustering to the learned representations, grouping patients based on their progression sub-phenotypes. The experimental results show that we successfully identified five primary sex-based AD sub-phenotypes with corresponding progression pathways with high confidence. These sex-specific sub-phenotypes not only illustrated distinct AD progression patterns but also revealed differences in clinical characteristics and comorbidities between females and males in AD development. These findings could provide valuable insights for advancing personalized AD intervention and treatment strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纵向电子健康记录的自动编码器识别阿尔茨海默病进展的性别特异性亚型
阿尔茨海默病(AD)是一种复杂的神经退行性疾病,受性别差异的影响很大,约三分之二的阿尔茨海默病患者为女性。要想制定有效的风险分层和预防策略,就必须描述阿尔茨海默病的性别特异性进展并确定其进展轨迹。在这项研究中,我们利用 OneFlorida+ 临床研究联合会的纵向电子健康记录(EHR)数据,开发了一种自动编码器,以发现 AD 进展过程中的性别特异性亚表型。具体来说,我们首先利用来自性别分层的 AD 队列的纵向电子病历构建了患者的时序表征。我们使用基于长短期记忆(LSTM)的自动编码器从患者的连续临床记录中提取并生成潜在表征嵌入。然后,我们对学习到的表征进行分层聚类,根据患者的进展亚表型对其进行分组。实验结果表明,我们成功地识别出了五种基于性别的原发性注意力缺失症亚型,并以较高的置信度确定了相应的进展路径。这些基于性别的亚型不仅展示了不同的AD进展模式,还揭示了AD发展过程中女性和男性在临床特征和合并症方面的差异。这些发现可为推进个性化的注意力缺失症干预和治疗策略提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case is not a case is not a case - challenges and solutions in determining urolithiasis caseloads using the digital infrastructure of a clinical data warehouse Reliable Online Auditory Cognitive Testing: An observational study Federated Multiple Imputation for Variables that Are Missing Not At Random in Distributed Electronic Health Records Characterizing the connection between Parkinson's disease progression and healthcare utilization Generative AI and Large Language Models in Reducing Medication Related Harm and Adverse Drug Events - A Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1