Jiaxing Sun, Cuiping Guo, Changrong Li, Zhenmin Du
{"title":"Experimental Determination of the Isothermal Sections and Liquidus Surface Projection of the Co–V–Zr System","authors":"Jiaxing Sun, Cuiping Guo, Changrong Li, Zhenmin Du","doi":"10.1007/s11661-024-07497-3","DOIUrl":null,"url":null,"abstract":"<p>The construction of the experimental liquidus surface projection and isothermal sections of the Co–V–Zr ternary system was based on the analyses of solidification microstructures and phase constituents. A new compound τ with Cr<sub>0.5</sub>Fe<sub>1.5</sub>Zr-type was identified, and the measured composition range of Zr in τ was ∼ 28.6 to 57.3 at. pct and 32.9 to 56.8 at. pct at 1100 °C and 1000 °C, respectively. The liquidus surface projection identified nine primary solidification areas, while two primary solidification areas were inferred from binary diagrams. Moreover, eight and ten three-phase equilibria were determined at 1100 °C and 1000 °C, respectively. The measured solubility of V in Co<sub>23</sub>Zr<sub>6</sub>, Co<sub>2</sub>Zr and CoZr reached ~ 0.5, 7.6 and 4.1 at. pct at 1100 °C. Meanwhile, the solubility of V in Co<sub>23</sub>Zr<sub>6</sub>, Co<sub>2</sub>Zr, CoZr and CoZr<sub>2</sub> was measured to be ~ 0.4, 7.6, 1.6 and 3.6 at. pct at 1000 °C. The solubility of Zr in Co<sub>2</sub>V<sub>3</sub> was ~ 3.6 at. pct at 1100 °C, while the solubility of Zr in Co<sub>3</sub>V, Co<sub>2</sub>V<sub>3</sub> and CoV<sub>3</sub> was determined ~ 1.3, 3.0 and 4.5 at. pct at 1000 °C, respectively. The experimental data can help improve the thermodynamic parameters of the Co–V–Zr system and advance the development of databases for multi-component Co-based superalloys.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07497-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of the experimental liquidus surface projection and isothermal sections of the Co–V–Zr ternary system was based on the analyses of solidification microstructures and phase constituents. A new compound τ with Cr0.5Fe1.5Zr-type was identified, and the measured composition range of Zr in τ was ∼ 28.6 to 57.3 at. pct and 32.9 to 56.8 at. pct at 1100 °C and 1000 °C, respectively. The liquidus surface projection identified nine primary solidification areas, while two primary solidification areas were inferred from binary diagrams. Moreover, eight and ten three-phase equilibria were determined at 1100 °C and 1000 °C, respectively. The measured solubility of V in Co23Zr6, Co2Zr and CoZr reached ~ 0.5, 7.6 and 4.1 at. pct at 1100 °C. Meanwhile, the solubility of V in Co23Zr6, Co2Zr, CoZr and CoZr2 was measured to be ~ 0.4, 7.6, 1.6 and 3.6 at. pct at 1000 °C. The solubility of Zr in Co2V3 was ~ 3.6 at. pct at 1100 °C, while the solubility of Zr in Co3V, Co2V3 and CoV3 was determined ~ 1.3, 3.0 and 4.5 at. pct at 1000 °C, respectively. The experimental data can help improve the thermodynamic parameters of the Co–V–Zr system and advance the development of databases for multi-component Co-based superalloys.