Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-07-10 DOI:10.1038/s43588-024-00653-0
Vadim K. Karnaukhov, Dmitrii S. Shcherbinin, Anton O. Chugunov, Dmitriy M. Chudakov, Roman G. Efremov, Ivan V. Zvyagin, Mikhail Shugay
{"title":"Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen","authors":"Vadim K. Karnaukhov, Dmitrii S. Shcherbinin, Anton O. Chugunov, Dmitriy M. Chudakov, Roman G. Efremov, Ivan V. Zvyagin, Mikhail Shugay","doi":"10.1038/s43588-024-00653-0","DOIUrl":null,"url":null,"abstract":"T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR–peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR–peptide–major histocompatibility complex structure. Then a TCR–peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR–peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes. TCRen predicts TCR specificity by modeling the TCR–peptide–MHC structure and estimating the TCR–peptide interaction energy using a statistical potential. The use of structural information allows TCRen to generalize to unseen epitopes, such as cancer neoepitopes.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"510-521"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00653-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR–peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR–peptide–major histocompatibility complex structure. Then a TCR–peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR–peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes. TCRen predicts TCR specificity by modeling the TCR–peptide–MHC structure and estimating the TCR–peptide interaction energy using a statistical potential. The use of structural information allows TCRen to generalize to unseen epitopes, such as cancer neoepitopes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 TCRen 基于结构预测 T 细胞受体对未知表位的识别能力
T 细胞受体(TCR)识别由主要组织相容性复合体蛋白呈现的外来肽是触发对病原体或癌症的适应性免疫反应的主要事件。预测 TCR 与多肽的相互作用对癌症、传染病和自身免疫性疾病的治疗具有重要意义,但这仍然是一个重大挑战,尤其是对于新的(未见过的)多肽表位。在此,我们介绍一种基于结构的方法--TCRen,用于对给定 TCR 的候选未见表位进行排序。TCRen 管道的第一阶段是对 TCR-肽-主要组织相容性复合体结构进行建模。然后从该结构中提取 TCR-肽残基接触图,并根据与目标 TCR 的相互作用得分对所有候选表位进行排序。根据现有晶体结构中 TCR-肽接触偏好的统计数据得出的能量势进行评分。我们的研究表明,TCRen 在区分同源肽和非同源肽方面具有很高的性能,有助于识别肿瘤浸润淋巴细胞识别的癌症新表位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the power of DNA for computing Collective deliberation driven by AI Harnessing deep learning to build optimized ligands MassiveFold: unveiling AlphaFold’s hidden potential with optimized and parallelized massive sampling A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1