Wei Jia , Ruizhe Ma , Weinan Niu , Li Yan , Zongmin Ma
{"title":"SFTe: Temporal knowledge graphs embedding for future interaction prediction","authors":"Wei Jia , Ruizhe Ma , Weinan Niu , Li Yan , Zongmin Ma","doi":"10.1016/j.is.2024.102423","DOIUrl":null,"url":null,"abstract":"<div><p>Interaction prediction is a crucial task in the Social Internet of Things (SIoT), serving diverse applications including social network analysis and recommendation systems. However, the dynamic nature of items, users, and their interactions over time poses challenges in effectively capturing and analyzing these changes. Existing interaction prediction models often overlook the temporal aspect and lack the ability to model multi-relational user-item interactions over time. To address these limitations, in this paper, we propose a <strong>S</strong>tructure, <strong>F</strong>acticity, and <strong>T</strong>emporal information preservation <strong>e</strong>mbedding model (SFTe) to predict future interaction. Our model leverages the advantages of Temporal Knowledge Graphs (TKGs) that can capture both the multi-relations and evolution. We begin by modeling user-item interactions over time by constructing a Temporal Interaction Knowledge Graph (TIKG). We then employ Structure Embedding (SE), Facticity Embedding (FE), and Temporal Embedding (TE) to capture topological structure, facticity consistency, and temporal dependence, respectively. In SE, we focus on preserving the first-order relationships to capture the topological structure of TIKG. In the FE component, given the distinct nature of SIoT, we introduce an attention mechanism to capture the effect of entities with the same additional information for generating subgraph embeddings. Lastly, TE utilizes recurrent neural networks to model the temporal dependencies among subgraphs and capture the evolving dynamics of the interactions over time. Experimental results on standard future interaction prediction demonstrate the superiority of the SFTe model compared with the state-of-the-art methods. Our model effectively addresses the challenges of time-aware interaction prediction, showcasing the potential of TKGs to enhance prediction performance.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102423"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000814","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Interaction prediction is a crucial task in the Social Internet of Things (SIoT), serving diverse applications including social network analysis and recommendation systems. However, the dynamic nature of items, users, and their interactions over time poses challenges in effectively capturing and analyzing these changes. Existing interaction prediction models often overlook the temporal aspect and lack the ability to model multi-relational user-item interactions over time. To address these limitations, in this paper, we propose a Structure, Facticity, and Temporal information preservation embedding model (SFTe) to predict future interaction. Our model leverages the advantages of Temporal Knowledge Graphs (TKGs) that can capture both the multi-relations and evolution. We begin by modeling user-item interactions over time by constructing a Temporal Interaction Knowledge Graph (TIKG). We then employ Structure Embedding (SE), Facticity Embedding (FE), and Temporal Embedding (TE) to capture topological structure, facticity consistency, and temporal dependence, respectively. In SE, we focus on preserving the first-order relationships to capture the topological structure of TIKG. In the FE component, given the distinct nature of SIoT, we introduce an attention mechanism to capture the effect of entities with the same additional information for generating subgraph embeddings. Lastly, TE utilizes recurrent neural networks to model the temporal dependencies among subgraphs and capture the evolving dynamics of the interactions over time. Experimental results on standard future interaction prediction demonstrate the superiority of the SFTe model compared with the state-of-the-art methods. Our model effectively addresses the challenges of time-aware interaction prediction, showcasing the potential of TKGs to enhance prediction performance.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.