Unlocking T-cell receptor–epitope insights with structural analysis

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-07-10 DOI:10.1038/s43588-024-00654-z
Miaozhe Huo, Yuepeng Jiang, Shuai Cheng Li
{"title":"Unlocking T-cell receptor–epitope insights with structural analysis","authors":"Miaozhe Huo, Yuepeng Jiang, Shuai Cheng Li","doi":"10.1038/s43588-024-00654-z","DOIUrl":null,"url":null,"abstract":"A method leverages protein structural data to predict T-cell receptor–peptide interactions for unseen peptide epitopes, which can be particularly useful for applications in cancer immunotherapy, autoimmunity studies, and vaccine design.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"475-476"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00654-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A method leverages protein structural data to predict T-cell receptor–peptide interactions for unseen peptide epitopes, which can be particularly useful for applications in cancer immunotherapy, autoimmunity studies, and vaccine design.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过结构分析揭开 T 细胞受体表位的神秘面纱
有一种方法利用蛋白质结构数据来预测未见肽表位的 T 细胞受体与肽的相互作用,这对癌症免疫疗法、自身免疫研究和疫苗设计中的应用特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Collective deliberation driven by AI. Harnessing deep learning to build optimized ligands. MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling. A deep learning approach for rational ligand generation with toxicity control via reactive building blocks. Enhancing protein stability prediction with geometric learning and pre-training strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1