Mohammad Asadul Haque, Afroza Sultana Sima, Md Jahiruddin, Richard William Bell
{"title":"Minimizing Phosphorus Mining through Optimum Phosphorus Fertilization in Maize","authors":"Mohammad Asadul Haque, Afroza Sultana Sima, Md Jahiruddin, Richard William Bell","doi":"10.1007/s42729-024-01917-4","DOIUrl":null,"url":null,"abstract":"<p>Maize, the third most important cereal crop in the world, has recently been introduced in the Ganges-Meghna mega delta coastal ecosystem, but optimum phosphorus (P) fertilizer rates for high yield and to avoid depletion of soil P reserves have not been determined. The objective of the experiment, repeated over three years, was to identify optimum rates of P for maximizing yield and P use efficiency, and for minimizing depletion of P from the soil. In the dry-seasons of 2020, 2021 and 2023, P was broadcast as triple superphosphate at 0, 12, 24, 36, 48, 60, 72, and 84 kg P ha<sup>− 1</sup> to maize (cv. Don-111) on a slightly acid silt loam soil. Maximum grain yield of 11.6, 10.8 and 10.8 t ha<sup>− 1</sup> was found at 72, 36 and 48 kg P ha<sup>− 1</sup> rate in 2020, 2021 and 2023, respectively. Based on the pooled yield, 60 kg P ha<sup>− 1</sup> was the minimum rate required for maximum yield but there was no significant increase in P uptake above 48 kg P ha<sup>− 1</sup>. The P partial balance was zero at 45 kg P ha<sup>− 1</sup>. At 48 kg P ha<sup>− 1</sup> the partial factor productivity was 201.8 kg grain kg<sup>− 1</sup> added P, agronomic use efficiency was 80.6 kg grain kg<sup>− 1</sup> added P, and recovery efficiency was 0.563 kg P uptake kg<sup>− 1</sup> added P. For sustenance of yield and soil P fertility, 48–60 kg P ha<sup>− 1</sup> was optimal for maize yielding 11–12 t ha<sup>− 1</sup> in the Ganges-Meghna mega delta coastal ecosystem.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01917-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Maize, the third most important cereal crop in the world, has recently been introduced in the Ganges-Meghna mega delta coastal ecosystem, but optimum phosphorus (P) fertilizer rates for high yield and to avoid depletion of soil P reserves have not been determined. The objective of the experiment, repeated over three years, was to identify optimum rates of P for maximizing yield and P use efficiency, and for minimizing depletion of P from the soil. In the dry-seasons of 2020, 2021 and 2023, P was broadcast as triple superphosphate at 0, 12, 24, 36, 48, 60, 72, and 84 kg P ha− 1 to maize (cv. Don-111) on a slightly acid silt loam soil. Maximum grain yield of 11.6, 10.8 and 10.8 t ha− 1 was found at 72, 36 and 48 kg P ha− 1 rate in 2020, 2021 and 2023, respectively. Based on the pooled yield, 60 kg P ha− 1 was the minimum rate required for maximum yield but there was no significant increase in P uptake above 48 kg P ha− 1. The P partial balance was zero at 45 kg P ha− 1. At 48 kg P ha− 1 the partial factor productivity was 201.8 kg grain kg− 1 added P, agronomic use efficiency was 80.6 kg grain kg− 1 added P, and recovery efficiency was 0.563 kg P uptake kg− 1 added P. For sustenance of yield and soil P fertility, 48–60 kg P ha− 1 was optimal for maize yielding 11–12 t ha− 1 in the Ganges-Meghna mega delta coastal ecosystem.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.