Mangrove (Avicennia marina) Conservation Contributed to a Higher Carbon Sequestration Rate at Protected Sites Compared to Overgrazed Mangrove Forests

IF 3.4 3区 农林科学 Q2 ENVIRONMENTAL SCIENCES Journal of Soil Science and Plant Nutrition Pub Date : 2024-07-08 DOI:10.1007/s42729-024-01878-8
Amal S. Dajam, Amr E. Keshta, Ahmed A. Bindajam, Rahma N. Al-Qthanin, Muhammad Arshad, Ebrahem M. Eid
{"title":"Mangrove (Avicennia marina) Conservation Contributed to a Higher Carbon Sequestration Rate at Protected Sites Compared to Overgrazed Mangrove Forests","authors":"Amal S. Dajam, Amr E. Keshta, Ahmed A. Bindajam, Rahma N. Al-Qthanin, Muhammad Arshad, Ebrahem M. Eid","doi":"10.1007/s42729-024-01878-8","DOIUrl":null,"url":null,"abstract":"<p>Coastal mangrove ecosystems have been degraded due to changes in land use and grazing. Here, we assess the differences in population characteristics and sediment organic carbon (SOC) stocks and carbon sequestration rates (CSR) at <i>Avicennia marina</i> protected and grazed locations along the southern Red Sea coast, Saudi Arabia. Tree density per unit area were counted (tree 100 m<sup>− 2</sup>) and maximum tree height and crown diameter (cm) were measured. Sediment bulk density (SBD, g cm<sup>− 3</sup>), sediment organic carbon (SOC) content (g C kg<sup>− 1</sup>), total SOC stocks (kg C m<sup>− 2</sup>) to a depth of 75 cm, and CSR (g C m<sup>− 2</sup> year<sup>− 1</sup>) were estimated. Protected <i>A. marina</i> trees had significantly (<i>p</i> &lt; 0.05) higher tree height and crown diameter (119.5 ± 8.3 and 209.6 ± 17.1 cm, respectively) than those of the mangrove trees at the grazed locations (76.8 ± 7.5 and 148.0 ± 23.5 cm, respectively). Sediment of the <i>A. marina</i> trees that are growing at the protected locations had significantly (<i>p</i> &lt; 0.05) higher SOC content, SOC density, SOC stock to a depth of 75 cm, and CSR (21.6 ± 0.5 g C kg<sup>− 1</sup>, 30.5 ± 0.6 kg C m<sup>− 3</sup>, 22.9 ± 1.1 kg C m<sup>− 2</sup>, and 6.7 ± 0.1 g C m<sup>− 2</sup> year<sup>− 1</sup>, respectively) than those of the grazed locations (9.6 ± 0.2 g C kg<sup>− 1</sup>, 14.6 ± 0.2 kg C m<sup>− 3</sup>, 10.9 ± 0.4 kg C m<sup>− 2</sup>, and 3.2 ± 0.0 g C m<sup>− 2</sup> year<sup>− 1</sup>, respectively). Our results provide strong evidence of the vital need to continue conserving <i>A. marina</i>’s population for accumulating more blue carbon for mitigation of global warming and offset greenhouse gas emissions.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01878-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Coastal mangrove ecosystems have been degraded due to changes in land use and grazing. Here, we assess the differences in population characteristics and sediment organic carbon (SOC) stocks and carbon sequestration rates (CSR) at Avicennia marina protected and grazed locations along the southern Red Sea coast, Saudi Arabia. Tree density per unit area were counted (tree 100 m− 2) and maximum tree height and crown diameter (cm) were measured. Sediment bulk density (SBD, g cm− 3), sediment organic carbon (SOC) content (g C kg− 1), total SOC stocks (kg C m− 2) to a depth of 75 cm, and CSR (g C m− 2 year− 1) were estimated. Protected A. marina trees had significantly (p < 0.05) higher tree height and crown diameter (119.5 ± 8.3 and 209.6 ± 17.1 cm, respectively) than those of the mangrove trees at the grazed locations (76.8 ± 7.5 and 148.0 ± 23.5 cm, respectively). Sediment of the A. marina trees that are growing at the protected locations had significantly (p < 0.05) higher SOC content, SOC density, SOC stock to a depth of 75 cm, and CSR (21.6 ± 0.5 g C kg− 1, 30.5 ± 0.6 kg C m− 3, 22.9 ± 1.1 kg C m− 2, and 6.7 ± 0.1 g C m− 2 year− 1, respectively) than those of the grazed locations (9.6 ± 0.2 g C kg− 1, 14.6 ± 0.2 kg C m− 3, 10.9 ± 0.4 kg C m− 2, and 3.2 ± 0.0 g C m− 2 year− 1, respectively). Our results provide strong evidence of the vital need to continue conserving A. marina’s population for accumulating more blue carbon for mitigation of global warming and offset greenhouse gas emissions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与过度放牧的红树林相比,红树林(Avicennia marina)的保护有助于提高保护地的碳封存率
由于土地使用和放牧的变化,沿海红树林生态系统已经退化。在此,我们评估了沙特阿拉伯南部红海沿岸 Avicennia marina 保护区和放牧区的种群特征、沉积物有机碳(SOC)储量和固碳率(CSR)的差异。对单位面积上的树木密度(100 米-2)进行计数,并测量最大树高和树冠直径(厘米)。估算了沉积物体积密度(SBD,克厘米-3)、沉积物有机碳(SOC)含量(克碳千克-1)、75 厘米深的 SOC 总存量(千克碳米-2)和 CSR(克碳米-2 年-1)。受保护的 A. marina 树的树高和树冠直径(分别为 119.5 ± 8.3 厘米和 209.6 ± 17.1 厘米)明显高于放牧地点的红树林(分别为 76.8 ± 7.5 厘米和 148.0 ± 23.5 厘米)(p < 0.05)。生长在保护区的红树林沉积物的 SOC 含量、SOC 密度、75 厘米深度的 SOC 储量和 CSR(21.6 ± 0.5 g C kg-1、30.5 ± 0.6 kg C m-3、22.9 ± 1.1 kg C m- 2,以及 6.7 ± 0.1 g C m- 2 year- 1)高于放牧地(分别为 9.6 ± 0.2 g C kg-1、14.6 ± 0.2 kg C m-3、10.9 ± 0.4 kg C m- 2,以及 3.2 ± 0.0 g C m- 2 year- 1)。我们的研究结果有力地证明,必须继续保护海鳗种群,以积累更多蓝碳,减缓全球变暖,抵消温室气体排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Soil Science and Plant Nutrition
Journal of Soil Science and Plant Nutrition Agricultural and Biological Sciences-Soil Science
CiteScore
5.90
自引率
10.30%
发文量
331
审稿时长
9 months
期刊介绍: The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science. Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration. Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies. Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome. The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.
期刊最新文献
Assessment of Management Practices for Improving Productivity, Profitability, and Energy-Carbon-Water Use Efficiency of Intensive Rice-toria-Sweet Corn System in Eastern India Enhancing Photosynthesis Pigment, Protein Content, Nutrient Uptake and Yield in Maize (Zea mays L.) Cultivars Using Vermicompost, Livestock Manure and Azotobacter chroococcum Phosphorus Solubilizing Microorganisms: An Eco-Friendly Approach for Sustainable Plant Health and Bioremediation Effect of Exogenous Chitosan on Physiological Characteristics, Photosynthetic Parameters, and Antioxidant Systems of Maize Seedlings Under Salt Stress Auxin-Mediated Modulation of Maize Rhizosphere Microbiome: Insights from Azospirillum Inoculation and Indole-3-Acetic Acid Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1