Mechanoreception of pneumatic soft robotic finger without tactile sensor based on dual-position feature

Kai Shi, Jun Li, Gang Bao
{"title":"Mechanoreception of pneumatic soft robotic finger without tactile sensor based on dual-position feature","authors":"Kai Shi, Jun Li, Gang Bao","doi":"10.1108/ir-03-2024-0096","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Mechanoreception is crucial for robotic planning and control applications, and for robotic fingers, mechanoreception is generally obtained through tactile sensors. As a new type of robotic finger, the soft finger also requires mechanoreception, like contact force and object stiffness. Unlike rigid fingers, soft fingers have elastic structures, meaning there is a connection between force and deformation of the soft fingers. It allows soft fingers to achieve mechanoreception without using tactile sensors. This study aims to provide a mechanoreception sensing scheme of the soft finger without any tactile sensors.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This research uses bending sensors to measure the actual bending state under force and calculates the virtual bending state under assumed no-load conditions using pressure sensors and statics model. The difference between the virtual and actual finger states is the finger deformation under load, and its product with the finger stiffness can be used to calculate the contact force. There are distinctions between the virtual and actual finger state change rates in the pressing process. The difference caused by the stiffness of different objects is different, which can be used to identify the object stiffness.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Contact force perception can achieve a detection accuracy of 0.117 N root mean square error within the range of 0–6 N contact force. The contact object stiffness perception has a detection average deviation of about 15%, and the detection standard deviation is 10% for low-stiffness objects and 20% for high-stiffness objects. It performs better at detecting the stiffness of low-stiffness objects, which is consistent with the sensory ability of human fingers.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper proposes a universal mechanoreception method for soft fingers that only uses indispensable bending and pressure sensors without tactile sensors. It helps to reduce the hardware complexity of soft robots. Meanwhile, the soft finger no longer needs to deploy the tactile sensor at the fingertip, which can benefit the optimization design of the fingertip structure without considering the complex sensor installation. On the other hand, this approach is no longer confined to adding components needed. It can fully use the soft robot body’s physical elasticity to convert sensor signals. Essentially, It treats the soft actuators as soft sensors.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-03-2024-0096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Mechanoreception is crucial for robotic planning and control applications, and for robotic fingers, mechanoreception is generally obtained through tactile sensors. As a new type of robotic finger, the soft finger also requires mechanoreception, like contact force and object stiffness. Unlike rigid fingers, soft fingers have elastic structures, meaning there is a connection between force and deformation of the soft fingers. It allows soft fingers to achieve mechanoreception without using tactile sensors. This study aims to provide a mechanoreception sensing scheme of the soft finger without any tactile sensors.

Design/methodology/approach

This research uses bending sensors to measure the actual bending state under force and calculates the virtual bending state under assumed no-load conditions using pressure sensors and statics model. The difference between the virtual and actual finger states is the finger deformation under load, and its product with the finger stiffness can be used to calculate the contact force. There are distinctions between the virtual and actual finger state change rates in the pressing process. The difference caused by the stiffness of different objects is different, which can be used to identify the object stiffness.

Findings

Contact force perception can achieve a detection accuracy of 0.117 N root mean square error within the range of 0–6 N contact force. The contact object stiffness perception has a detection average deviation of about 15%, and the detection standard deviation is 10% for low-stiffness objects and 20% for high-stiffness objects. It performs better at detecting the stiffness of low-stiffness objects, which is consistent with the sensory ability of human fingers.

Originality/value

This paper proposes a universal mechanoreception method for soft fingers that only uses indispensable bending and pressure sensors without tactile sensors. It helps to reduce the hardware complexity of soft robots. Meanwhile, the soft finger no longer needs to deploy the tactile sensor at the fingertip, which can benefit the optimization design of the fingertip structure without considering the complex sensor installation. On the other hand, this approach is no longer confined to adding components needed. It can fully use the soft robot body’s physical elasticity to convert sensor signals. Essentially, It treats the soft actuators as soft sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双位置特征的无触觉传感器气动软机械手指的机械感知能力
目的机械感知对于机器人规划和控制应用至关重要,而对于机器人手指来说,机械感知通常是通过触觉传感器获得的。作为一种新型机器人手指,软手指也需要机械感知,如接触力和物体硬度。与刚性手指不同,软手指具有弹性结构,这意味着力与软手指的变形之间存在联系。这使得软手指可以在不使用触觉传感器的情况下实现机械感知。本研究旨在提供一种不使用任何触觉传感器的软手指机械感知传感方案。本研究使用弯曲传感器测量受力时的实际弯曲状态,并利用压力传感器和静力学模型计算假定空载条件下的虚拟弯曲状态。手指虚拟状态和实际状态的区别在于手指在负载下的变形,其与手指刚度的乘积可用于计算接触力。在加压过程中,手指虚拟状态和实际状态的变化率是有区别的。在 0-6 N 的接触力范围内,接触力感知的检测精度可达 0.117 N 的均方根误差。接触物体刚度感知的检测平均偏差约为 15%,低刚度物体的检测标准偏差为 10%,高刚度物体的检测标准偏差为 20%。本文提出了一种通用的软手指机械感知方法,该方法只使用不可或缺的弯曲和压力传感器,而不使用触觉传感器。它有助于降低软体机器人的硬件复杂性。同时,软手指不再需要在指尖部署触觉传感器,这有利于指尖结构的优化设计,而无需考虑复杂的传感器安装。另一方面,这种方法不再局限于增加所需的组件。它可以充分利用机器人软体的物理弹性来转换传感器信号。从本质上讲,它将软执行器视为软传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model optimization and acceleration method based on meta-learning and model pruning for laser vision weld tracking system High-performance foot trajectory tracking control of hydraulic legged robots based on fixed-time disturbance observers Design of a multi-manipulator robot for relieving welding residual stress An online error compensation strategy for hybrid robot based on grating feedback YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1