{"title":"Material Removal Rate in Polishing Polymethylmethacrylate Parts","authors":"Yu. D. Filatov","doi":"10.3103/S1063457624030031","DOIUrl":null,"url":null,"abstract":"<p>The investigation into the mechanism of polymethylmethacrylate (PMMA) polishing using dispersed systems of micro- and nanoparticles of polishing powders revealed that the formation of slurry particles in the processed material is driven by Förster resonance energy transfer between the energy levels of the polishing powder particles and the processed material. This transfer occurs within the open microcavity created by the surfaces of the processed material and the polishing powder particles, in a multimode regime. The material removal rate during PMMA polishing is determined by the combined coefficients of volumetric wear and the total lifetime of the excited states of clusters on the processed surface, along with the resulting quality factor of the resonator at all allowed frequencies of the discrete spectrum. The results of the theoretical calculation of the material removal rate during PMMA polishing are in good agreement with the data from the experimental determination of polishing performance, with a deviation of 1–3%.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 3","pages":"212 - 220"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624030031","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation into the mechanism of polymethylmethacrylate (PMMA) polishing using dispersed systems of micro- and nanoparticles of polishing powders revealed that the formation of slurry particles in the processed material is driven by Förster resonance energy transfer between the energy levels of the polishing powder particles and the processed material. This transfer occurs within the open microcavity created by the surfaces of the processed material and the polishing powder particles, in a multimode regime. The material removal rate during PMMA polishing is determined by the combined coefficients of volumetric wear and the total lifetime of the excited states of clusters on the processed surface, along with the resulting quality factor of the resonator at all allowed frequencies of the discrete spectrum. The results of the theoretical calculation of the material removal rate during PMMA polishing are in good agreement with the data from the experimental determination of polishing performance, with a deviation of 1–3%.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.