Effect of acetylation on wood-water interactions studied by sorption calorimetry

IF 4.9 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD Cellulose Pub Date : 2024-07-09 DOI:10.1007/s10570-024-06044-y
Ramūnas Digaitis, Lars Wadsö, Maria Fredriksson, Emil E. Thybring
{"title":"Effect of acetylation on wood-water interactions studied by sorption calorimetry","authors":"Ramūnas Digaitis, Lars Wadsö, Maria Fredriksson, Emil E. Thybring","doi":"10.1007/s10570-024-06044-y","DOIUrl":null,"url":null,"abstract":"<p>Sorption of water has a profound effect on the material properties of wood. The uptake of water vapour in wood and other materials releases more heat than the condensation of vapour to liquid water. This excess energy provides insights to the interactions and energy state of the absorbed water molecules. Modification of wood by acetylation is a common way of altering the wood-water interactions; however, very few data exist on how this and other types of modification affect the energy state of absorbed water in wood. This study is the first to use sorption calorimetry on modified wood to explore the effect of acetylation on wood-water interactions. Acetylation decreased the strength of the interactions between wood and water as seen from a decrease in differential enthalpy of mixing, both overall and in the dry state. It appears that acetylation removes or hinders the most-energetic interactions or bonding configurations of water in wood, perhaps because acetylation reduces the number of water-accessible hydroxyls more than it reduces the amount of absorbed water molecules.</p>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10570-024-06044-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Sorption of water has a profound effect on the material properties of wood. The uptake of water vapour in wood and other materials releases more heat than the condensation of vapour to liquid water. This excess energy provides insights to the interactions and energy state of the absorbed water molecules. Modification of wood by acetylation is a common way of altering the wood-water interactions; however, very few data exist on how this and other types of modification affect the energy state of absorbed water in wood. This study is the first to use sorption calorimetry on modified wood to explore the effect of acetylation on wood-water interactions. Acetylation decreased the strength of the interactions between wood and water as seen from a decrease in differential enthalpy of mixing, both overall and in the dry state. It appears that acetylation removes or hinders the most-energetic interactions or bonding configurations of water in wood, perhaps because acetylation reduces the number of water-accessible hydroxyls more than it reduces the amount of absorbed water molecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过吸附量热法研究乙酰化对木材与水之间相互作用的影响
水的吸附对木材的材料特性有着深远的影响。木材和其他材料吸收水蒸气释放的热量比水蒸气凝结成液态水释放的热量要多。这种过剩的能量为了解被吸收水分子的相互作用和能量状态提供了线索。通过乙酰化对木材进行改性是改变木材与水相互作用的一种常见方法;然而,关于这种改性和其他类型的改性如何影响木材中吸收水的能量状态的数据却很少。本研究首次在改性木材上使用吸附量热法来探讨乙酰化对木材-水相互作用的影响。乙酰化降低了木材与水之间的相互作用强度,这一点可以从整体和干燥状态下混合差焓的降低看出。乙酰化似乎消除或阻碍了木材中最有能量的相互作用或水的键合构型,这可能是因为乙酰化减少了可与水接触的羟基的数量,而不是减少了吸收水分子的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
期刊最新文献
Understanding the biochemical changes at molecular level during biomass pretreatment: a comprehensive analysis Flow birefringence of cellulose nanocrystal suspensions in three-dimensional flow fields: revisiting the stress-optic law Amphipathic medical composite cotton gauze with unidirectional drainage and anti-adhesion properties for wound healing Carboxymethyl cellulose/layered double hydroxide nanocomposite films with high barrier property and transparency Enhancement of cellulose nanofibril (CNF) film barrier properties by nanofibril alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1