Canonical variate residual analysis for industrial processes fault detection

Yuting Li, Fei Li, Xiaoqiang Liu
{"title":"Canonical variate residual analysis for industrial processes fault detection","authors":"Yuting Li, Fei Li, Xiaoqiang Liu","doi":"10.1002/cjce.25399","DOIUrl":null,"url":null,"abstract":"With the rapid development of intelligent integration in industrial processes, a challenge emerges. Early failures cannot be detected in a timely manner, potentially leading to significant financial losses. While traditional canonical variate analysis (CVA) methods are effective for dynamic process monitoring, they may lack the flexibility required for early fault detection. To address this challenge, a fault detection method based on canonical variate residual analysis (CVRA) is proposed. CVRA introduces a distinctive residual statistic that preserves critical information about the data. It places heightened focus on the primary components of the data, capturing core features of system changes and enhancing sensitivity to early anomalies. Additionally, by incorporating the geometric properties of the Manhattan distance, it mitigates statistical data errors, thereby improving detection accuracy. Simulation results validate the method's effectiveness in the Tennessee Eastman (TE) process. Furthermore, the successful application of the three‐phase flow facility provides a benchmark for evaluation using real process data.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of intelligent integration in industrial processes, a challenge emerges. Early failures cannot be detected in a timely manner, potentially leading to significant financial losses. While traditional canonical variate analysis (CVA) methods are effective for dynamic process monitoring, they may lack the flexibility required for early fault detection. To address this challenge, a fault detection method based on canonical variate residual analysis (CVRA) is proposed. CVRA introduces a distinctive residual statistic that preserves critical information about the data. It places heightened focus on the primary components of the data, capturing core features of system changes and enhancing sensitivity to early anomalies. Additionally, by incorporating the geometric properties of the Manhattan distance, it mitigates statistical data errors, thereby improving detection accuracy. Simulation results validate the method's effectiveness in the Tennessee Eastman (TE) process. Furthermore, the successful application of the three‐phase flow facility provides a benchmark for evaluation using real process data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于工业流程故障检测的典型变量残差分析
随着智能集成在工业流程中的快速发展,一个挑战出现了。无法及时发现早期故障,可能会导致重大经济损失。虽然传统的典型变量分析 (CVA) 方法对动态过程监控很有效,但可能缺乏早期故障检测所需的灵活性。为了应对这一挑战,我们提出了一种基于典型变异残差分析(CVRA)的故障检测方法。CVRA 引入了一种独特的残差统计,可保留数据的关键信息。它更加关注数据的主要组成部分,捕捉系统变化的核心特征,提高对早期异常的敏感性。此外,通过结合曼哈顿距离的几何特性,它还能减少统计数据误差,从而提高检测精度。模拟结果验证了该方法在田纳西伊士曼(TE)工艺中的有效性。此外,三相流设备的成功应用为使用真实工艺数据进行评估提供了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent design of nerve guidance conduits: An artificial intelligence‐driven fluid structure interaction study on modelling and optimization of nerve growth Synergistic effect of alcohol polyoxyethylene ether sodium sulphate and copper foam on methane hydrate formation Effect of the main components in gasification wastewater on the surface properties of coal water slurry Global dynamic features and information of adjacent hidden layer enhancement based on autoencoder for industrial process soft sensor application Computational modelling and optimization of physicochemical absorption of CO2 in rotating packed bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1