{"title":"Hypoxia-driven Dental Pulp Stem Cells as a Promising Strategy for Tissue Regeneration","authors":"Chengcheng Liao, Lulu Chen, Mingli Xiang, Sichen Long, Meiling Xiang, Linlin Xiao, Qian Long, Jianguo Liu, Xiaoyan Guan","doi":"10.2174/011574888x312892240625091241","DOIUrl":null,"url":null,"abstract":": Hypoxia is a common hallmark in both physiological and pathological states. The adaptation to hypoxia is a key cellular event in the development and differentiation of stem cells, as well as in pathological conditions such as ischemia. The hypoxic microenvironment, culture conditions, and reactive oxygen species (ROS) scavengers have all been shown to enhance the proliferation, anti-aging properties, immunomodulatory capabilities, differentiation potential, and regenerative and therapeutic potential of dental pulp stem cells (DPSCs). However, severe and persistent hypoxia can be detrimental to the survival and tissue regeneration of DPSCs. Therefore, hypoxic preconditioning of DPSCs and applying oxygen-releasing materials to mitigate extreme hypoxia can enhance the regenerative and therapeutic potential in damaged organisms. This article provides a comprehensive review of the influence of the hypoxic microenvironment on the biological characteristics of dental pulp stem cells (DPSCs). It also presents a summary of the recent research advances in DPSCs regarding tissue regeneration, particularly focusing on the utilization of hypoxic preconditioning. Additionally, this review highlights the diverse biological effects of hypoxia on tissue regeneration and proposes promising novel therapeutic strategies.","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011574888x312892240625091241","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
: Hypoxia is a common hallmark in both physiological and pathological states. The adaptation to hypoxia is a key cellular event in the development and differentiation of stem cells, as well as in pathological conditions such as ischemia. The hypoxic microenvironment, culture conditions, and reactive oxygen species (ROS) scavengers have all been shown to enhance the proliferation, anti-aging properties, immunomodulatory capabilities, differentiation potential, and regenerative and therapeutic potential of dental pulp stem cells (DPSCs). However, severe and persistent hypoxia can be detrimental to the survival and tissue regeneration of DPSCs. Therefore, hypoxic preconditioning of DPSCs and applying oxygen-releasing materials to mitigate extreme hypoxia can enhance the regenerative and therapeutic potential in damaged organisms. This article provides a comprehensive review of the influence of the hypoxic microenvironment on the biological characteristics of dental pulp stem cells (DPSCs). It also presents a summary of the recent research advances in DPSCs regarding tissue regeneration, particularly focusing on the utilization of hypoxic preconditioning. Additionally, this review highlights the diverse biological effects of hypoxia on tissue regeneration and proposes promising novel therapeutic strategies.
期刊介绍:
Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.