{"title":"Bayesian Optimized LightGBM model for predicting the fundamental vibrational period of masonry infilled RC frames","authors":"Taimur Rahman, Pengfei Zheng, Shamima Sultana","doi":"10.1007/s11709-024-1077-z","DOIUrl":null,"url":null,"abstract":"<p>The precise prediction of the fundamental vibrational period for reinforced concrete (RC) buildings with infilled walls is essential for structural design, especially earthquake-resistant design. Machine learning models from previous studies, while boasting commendable accuracy in predicting the fundamental period, exhibit vulnerabilities due to lengthy training times and inherent dependence on pre-trained models, especially when engaging with continually evolving data sets. This predicament emphasizes the necessity for a model that adeptly balances predictive accuracy with robust adaptability and swift data training. The latter should include consistent re-training ability as demanded by real-time, continuously updated data sets. This research implements an optimized Light Gradient Boosting Machine (LightGBM) model, highlighting its augmented predictive capabilities, realized through the astute use of Bayesian Optimization for hyperparameter tuning on the FP4026 research data set, and illuminating its adaptability and efficiency in predictive modeling. The results show that the <i>R</i><sup>2</sup> score of LightGBM model is 0.9995 and <i>RMSE</i> is 0.0178, while training speed is 23.2 times faster than that offered by XGBoost and 45.5 times faster than for Gradient Boosting. Furthermore, this study introduces a practical application through a streamlit-powered, web-based dashboard, enabling engineers to effortlessly utilize and augment the model, contributing data and ensuring precise fundamental period predictions, effectively bridging scholarly research and practical applications.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"41 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1077-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The precise prediction of the fundamental vibrational period for reinforced concrete (RC) buildings with infilled walls is essential for structural design, especially earthquake-resistant design. Machine learning models from previous studies, while boasting commendable accuracy in predicting the fundamental period, exhibit vulnerabilities due to lengthy training times and inherent dependence on pre-trained models, especially when engaging with continually evolving data sets. This predicament emphasizes the necessity for a model that adeptly balances predictive accuracy with robust adaptability and swift data training. The latter should include consistent re-training ability as demanded by real-time, continuously updated data sets. This research implements an optimized Light Gradient Boosting Machine (LightGBM) model, highlighting its augmented predictive capabilities, realized through the astute use of Bayesian Optimization for hyperparameter tuning on the FP4026 research data set, and illuminating its adaptability and efficiency in predictive modeling. The results show that the R2 score of LightGBM model is 0.9995 and RMSE is 0.0178, while training speed is 23.2 times faster than that offered by XGBoost and 45.5 times faster than for Gradient Boosting. Furthermore, this study introduces a practical application through a streamlit-powered, web-based dashboard, enabling engineers to effortlessly utilize and augment the model, contributing data and ensuring precise fundamental period predictions, effectively bridging scholarly research and practical applications.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.