Carbon nanotubes as efficient anode current collectors for stationary aqueous Zn-Br2 batteries

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-07-06 DOI:10.1016/j.carbon.2024.119407
Noam Levi, Gil Bergman, Amey Nimkar, Merav Nadav Tsubery, Arie Borenstein, Alex Adronov, Doron Aurbach, Daniel Sharon, Gilbert Daniel Nessim, Netanel Shpigel
{"title":"Carbon nanotubes as efficient anode current collectors for stationary aqueous Zn-Br2 batteries","authors":"Noam Levi, Gil Bergman, Amey Nimkar, Merav Nadav Tsubery, Arie Borenstein, Alex Adronov, Doron Aurbach, Daniel Sharon, Gilbert Daniel Nessim, Netanel Shpigel","doi":"10.1016/j.carbon.2024.119407","DOIUrl":null,"url":null,"abstract":"<p>Static Zn-Br2 batteries are considered an attractive option for cost-effective and high-capacity systems for large energy storage. Yet, the corrosive nature of the Zn-Br<sub>2</sub> electrolytes entails a careful selection of all cells’ ingredients to avoid rapid degradation of the batteries upon cycling. Thanks to their high chemical resistance and excellent conductivity, carbonaceous electrodes are typically utilized as current collectors for the cathode side, while thin Zn or Ti foils are most widely used as the anodes’ current collectors. However, these metals tend to corrode fast, thus undermining the desirable performance of the cells as durable and stable rechargeable batteries. We demonstrate the effective utilization of carbon nanotubes (CNT) films as highly stable anode current collector for Zn-Br<sub>2</sub> batteries. Dispersion of the CNT beforehand in slurries containing anionic, cationic, or neutral surfactants yielded distinct chemical and physical characteristics of these carbonaceous electrodes. This, in turn, led to significant differences in the morphology of the deposited Zn, consequently affecting the electrochemical performance of the Zn anodes. These findings provide insight into the interactions between Zn cations and the surface of CNTs, offering opportunities for further surface modifications of CNTs as effective anodes’ substrates for Zn-Br<sub>2</sub> batteries.</p>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.carbon.2024.119407","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Static Zn-Br2 batteries are considered an attractive option for cost-effective and high-capacity systems for large energy storage. Yet, the corrosive nature of the Zn-Br2 electrolytes entails a careful selection of all cells’ ingredients to avoid rapid degradation of the batteries upon cycling. Thanks to their high chemical resistance and excellent conductivity, carbonaceous electrodes are typically utilized as current collectors for the cathode side, while thin Zn or Ti foils are most widely used as the anodes’ current collectors. However, these metals tend to corrode fast, thus undermining the desirable performance of the cells as durable and stable rechargeable batteries. We demonstrate the effective utilization of carbon nanotubes (CNT) films as highly stable anode current collector for Zn-Br2 batteries. Dispersion of the CNT beforehand in slurries containing anionic, cationic, or neutral surfactants yielded distinct chemical and physical characteristics of these carbonaceous electrodes. This, in turn, led to significant differences in the morphology of the deposited Zn, consequently affecting the electrochemical performance of the Zn anodes. These findings provide insight into the interactions between Zn cations and the surface of CNTs, offering opportunities for further surface modifications of CNTs as effective anodes’ substrates for Zn-Br2 batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管作为固定式 Zn-Br2 水电池的高效阳极集流器
静态 Zn-Br2 电池被认为是具有成本效益和高容量的大型储能系统的理想选择。然而,由于 Zn-Br2 电解质具有腐蚀性,因此需要仔细选择电池的所有成分,以避免电池在循环过程中迅速降解。碳质电极具有较高的耐化学性和出色的导电性,通常被用作阴极的集流器,而 Zn 或 Ti 薄膜则被广泛用作阳极的集流器。然而,这些金属往往会迅速腐蚀,从而影响电池作为耐用、稳定的充电电池的理想性能。我们展示了如何有效利用碳纳米管(CNT)薄膜作为 Zn-Br2 电池的高稳定性阳极集流器。事先将碳纳米管分散在含有阴离子、阳离子或中性表面活性剂的泥浆中,可使这些碳质电极具有不同的化学和物理特性。这反过来又导致了沉积锌形态的显著差异,从而影响了锌阳极的电化学性能。这些发现深入揭示了锌阳离子与碳纳米管表面之间的相互作用,为进一步将碳纳米管表面改性为 Zn-Br2 电池的有效阳极基底提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Redox-active hydrogel electrolytes for carbon-based flexible supercapacitors over a wide temperature range New insights into the role of nitrogen doping in microporous carbon on the capacitive charge storage mechanism: from ab initio to machine learning accelerated molecular dynamics Mechanics of microblister tests in 2D materials accounting for frictional slippage Controllable preparation of carbon nanofiber membranes for enhanced flexibility and permeability Copper molybdenum sulfide coupled with multi-walled carbon nanotube nanocomposite for robust water splitting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1