{"title":"Complete and Partial Synchronization of Two-Group and Three-Group Kuramoto Oscillators","authors":"Shih-Hsin Chen, Chun-Hsiung Hsia, Ting-Yang Hsiao","doi":"10.1137/23m1586227","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1720-1765, September 2024. <br/> Abstract.This paper is to investigate synchronization theories of a two-group Kuramoto model and a three-group Kuramoto model. In the settings of these models, every oscillator directly interacts with each other in the same group. In each group, only one oscillator directly interacts with one oscillator in another group. We prove that if the coupling strength is large and the initial configuration of each group is confined to a sector with the arc length less than [math], then all oscillators achieve a complete frequency synchronization asymptotically. We emphasize that there is no need to impose any initial condition on the connection between different groups. If, in addition, the natural frequencies in one group are the same, then partial phase synchronization occurs. Moreover, if all natural frequencies are identical, we prove that all oscillators either achieve a complete phase synchronization asymptotically or tend to a bipolar phase-locking state. We also provide several numerical simulations to support the main results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1586227","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1720-1765, September 2024. Abstract.This paper is to investigate synchronization theories of a two-group Kuramoto model and a three-group Kuramoto model. In the settings of these models, every oscillator directly interacts with each other in the same group. In each group, only one oscillator directly interacts with one oscillator in another group. We prove that if the coupling strength is large and the initial configuration of each group is confined to a sector with the arc length less than [math], then all oscillators achieve a complete frequency synchronization asymptotically. We emphasize that there is no need to impose any initial condition on the connection between different groups. If, in addition, the natural frequencies in one group are the same, then partial phase synchronization occurs. Moreover, if all natural frequencies are identical, we prove that all oscillators either achieve a complete phase synchronization asymptotically or tend to a bipolar phase-locking state. We also provide several numerical simulations to support the main results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.