Driver profiling using trajectories on arbitrary roads by clustering roads and drivers successively

IF 3.3 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Memetic Computing Pub Date : 2024-07-09 DOI:10.1007/s12293-024-00416-4
Shengfei Lyu, Di Wang, Xuehao Yang, Chunyan Miao
{"title":"Driver profiling using trajectories on arbitrary roads by clustering roads and drivers successively","authors":"Shengfei Lyu, Di Wang, Xuehao Yang, Chunyan Miao","doi":"10.1007/s12293-024-00416-4","DOIUrl":null,"url":null,"abstract":"<p>Driver profiling is a widely used tool in fleet management and driver-specific insurance because it differentiates drivers based on their driving behaviors, such as aggressive and non-aggressive, which correspond to different levels of driving risk. However, most existing driver profiling methods require all drivers to drive on the same predefined route or type of roads, simply to make sure their driving behaviors are comparable. This premise makes these methods not be able to profile drivers who drive on arbitrary roads, which constitute the real-world scenarios for most drivers. To enable the profiling of drivers using their naturalistic driving data, i.e., driving trajectories recorded while they were driving on arbitrary roads at their own free will, in this paper, we propose a novel method named cLustering rOads And Drivers Successively (LOADS). Specifically, LOADS first categorizes the roads into different types using the extracted characteristics of all drivers driving on the respective roads. It then groups drivers into different clusters to obtain their profile labels (e.g., aggressive or non-aggressive) using the extracted driving characteristics on each road type. We conduct extensive experiments using two real-world driving trajectory datasets comprising thousands of driving trajectories of hundreds of drivers. Statistical analysis results indicate that the driver groups identified by LOADS have significantly different driving styles. To the best of our knowledge, LOADS is the first method that focuses on profiling drivers who drive on arbitrary roads, showing a great potential to enable real-world driver profiling applications.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"16 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00416-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Driver profiling is a widely used tool in fleet management and driver-specific insurance because it differentiates drivers based on their driving behaviors, such as aggressive and non-aggressive, which correspond to different levels of driving risk. However, most existing driver profiling methods require all drivers to drive on the same predefined route or type of roads, simply to make sure their driving behaviors are comparable. This premise makes these methods not be able to profile drivers who drive on arbitrary roads, which constitute the real-world scenarios for most drivers. To enable the profiling of drivers using their naturalistic driving data, i.e., driving trajectories recorded while they were driving on arbitrary roads at their own free will, in this paper, we propose a novel method named cLustering rOads And Drivers Successively (LOADS). Specifically, LOADS first categorizes the roads into different types using the extracted characteristics of all drivers driving on the respective roads. It then groups drivers into different clusters to obtain their profile labels (e.g., aggressive or non-aggressive) using the extracted driving characteristics on each road type. We conduct extensive experiments using two real-world driving trajectory datasets comprising thousands of driving trajectories of hundreds of drivers. Statistical analysis results indicate that the driver groups identified by LOADS have significantly different driving styles. To the best of our knowledge, LOADS is the first method that focuses on profiling drivers who drive on arbitrary roads, showing a great potential to enable real-world driver profiling applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对道路和驾驶员进行连续聚类,利用任意道路上的驾驶员轨迹进行驾驶员特征分析
驾驶员特征分析是车队管理和特定驾驶员保险中广泛使用的一种工具,因为它可以根据驾驶员的驾驶行为(如激进和非激进)来区分驾驶员,而激进和非激进与不同的驾驶风险水平相对应。然而,现有的大多数驾驶员特征分析方法都要求所有驾驶员在相同的预定路线或道路类型上驾驶,以确保他们的驾驶行为具有可比性。这一前提使得这些方法无法对在任意道路上驾驶的驾驶员进行特征分析,而这正是大多数驾驶员的真实驾驶场景。为了能够利用驾驶员的自然驾驶数据(即他们在任意道路上自由驾驶时记录的驾驶轨迹)对驾驶员进行特征分析,我们在本文中提出了一种名为 "连续搜索道路和驾驶员"(cLustering rOads And Drivers Successively,LOADS)的新方法。具体来说,LOADS 首先利用提取的在相应道路上行驶的所有司机的特征,将道路分为不同类型。然后,LOADS 利用在每种道路类型上提取的驾驶特征,将驾驶员分成不同的群组,以获得他们的特征标签(如攻击性或非攻击性)。我们使用两个真实世界的驾驶轨迹数据集进行了大量实验,其中包括数百名驾驶员的数千条驾驶轨迹。统计分析结果表明,LOADS 所识别的驾驶员群体具有明显不同的驾驶风格。据我们所知,LOADS是第一种专注于对在任意道路上驾驶的驾驶员进行特征分析的方法,在实现真实世界驾驶员特征分析应用方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Memetic Computing
Memetic Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍: Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems. The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics: Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search. Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand. Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.
期刊最新文献
ResGAT: Residual Graph Attention Networks for molecular property prediction Enhancing online yard crane scheduling through a two-stage rollout memetic genetic programming Proximal evolutionary strategy: improving deep reinforcement learning through evolutionary policy optimization Where does the crude oil originate? The role of near-infrared spectroscopy in accurate source detection Bootstrap contrastive domain adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1