Cross-Subject Emotion Recognition From Multichannel EEG Signals Using Multivariate Decomposition and Ensemble Learning

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Cognitive and Developmental Systems Pub Date : 2024-07-08 DOI:10.1109/TCDS.2024.3417534
Raveendrababu Vempati;Lakhan Dev Sharma;Rajesh Kumar Tripathy
{"title":"Cross-Subject Emotion Recognition From Multichannel EEG Signals Using Multivariate Decomposition and Ensemble Learning","authors":"Raveendrababu Vempati;Lakhan Dev Sharma;Rajesh Kumar Tripathy","doi":"10.1109/TCDS.2024.3417534","DOIUrl":null,"url":null,"abstract":"Emotions are mental states that determine the behavior of a person in society. Automated identification of a person's emotion is vital in different applications such as brain–computer interfaces (BCIs), recommender systems (RSs), and cognitive neuroscience. This article proposes an automated approach based on multivariate fast iterative filtering (MvFIF) and an ensemble machine learning model to recognize cross-subject emotions from electroencephalogram (EEG) signals. The multichannel EEG signals are initially decomposed into multichannel intrinsic mode functions (MIMFs) using the MvFIF. The features, such as differential entropy (DE), dispersion entropy (DispEn), permutation entropy (PE), spectral entropy (SE), and distribution entropy (DistEn), are extracted from MIMFs. The binary atom search optimization (BASO) technique is employed to reduce the dimension of the feature space. The light gradient boosting machine (LGBM), extreme learning machine (ELM), and ensemble bagged tree (EBT) classifiers are used to recognize different human emotions using the features of EEG signals. The results demonstrate that the LGBM classifier has achieved the highest average accuracy of 99.50% and 98.79%, respectively, using multichannel EEG signals from the GAMEEMO and DREAMER databases for cross-subject emotion recognition (ER). Compared to other multivariate signal decomposition algorithms, the MvFIF-based method has demonstrated higher accuracy in recognizing emotions using multichannel EEG signals. The proposed (MvFIF+DE+BASO+LGBM) technique outperforms the existing state-of-the-art methods in ER using EEG signals.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 1","pages":"77-88"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10589482/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Emotions are mental states that determine the behavior of a person in society. Automated identification of a person's emotion is vital in different applications such as brain–computer interfaces (BCIs), recommender systems (RSs), and cognitive neuroscience. This article proposes an automated approach based on multivariate fast iterative filtering (MvFIF) and an ensemble machine learning model to recognize cross-subject emotions from electroencephalogram (EEG) signals. The multichannel EEG signals are initially decomposed into multichannel intrinsic mode functions (MIMFs) using the MvFIF. The features, such as differential entropy (DE), dispersion entropy (DispEn), permutation entropy (PE), spectral entropy (SE), and distribution entropy (DistEn), are extracted from MIMFs. The binary atom search optimization (BASO) technique is employed to reduce the dimension of the feature space. The light gradient boosting machine (LGBM), extreme learning machine (ELM), and ensemble bagged tree (EBT) classifiers are used to recognize different human emotions using the features of EEG signals. The results demonstrate that the LGBM classifier has achieved the highest average accuracy of 99.50% and 98.79%, respectively, using multichannel EEG signals from the GAMEEMO and DREAMER databases for cross-subject emotion recognition (ER). Compared to other multivariate signal decomposition algorithms, the MvFIF-based method has demonstrated higher accuracy in recognizing emotions using multichannel EEG signals. The proposed (MvFIF+DE+BASO+LGBM) technique outperforms the existing state-of-the-art methods in ER using EEG signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多变量分解和集合学习从多通道脑电信号中识别跨主体情绪
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
10.00%
发文量
170
期刊介绍: The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.
期刊最新文献
Table of Contents IEEE Transactions on Cognitive and Developmental Systems Information for Authors IEEE Computational Intelligence Society Information Editorial: 2025 New Year Message From the Editor-in-Chief IEEE Transactions on Cognitive and Developmental Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1